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Abstract
Flooding is one of the major natural hazards in the UK. Accurate flood estimation at ungauged catchment is an important
component to understand and mitigate flood hazards, but still a difficult issue. This study therefore attempts to explore and
improve an index flood estimation model, known as the FEH-QMED model, popular in the UK. It was developed under the
assumption that the index flood of QMED, i.e., the median of the set of annual maximum (AMAX) flood data, standing
for a flooding level of 2-year return period, can be explained by catchment descriptors. In this study, two fundamentals are
empirically explored, including assessing reliability of the nonlinear functional impacts of the catchment descriptors on the
logarithmic transformation of QMED, specified by the FEH-QMED model, and the potential to improve the model for more
accurate index flood estimation, based on the flooding data of 586 gauged stations across the UK. Through a spatial additive
regression analysis, we empirically find that the nonlinear impacts of the catchment descriptors in an updated FEH-QMED
model appear reliable. However, spatial correlation tests including Moran’s I and Lagrange multiplier tests show that strong
spatial dependence exists in the residuals of, but was not fully taken into account by, the QMED type models. We have
therefore empirically established new spatial index flood estimation models by proposing spatial autoregressive models to
model the impacts of the neighboring sites. Cross-validation assessments demonstrate that the suggested spatial error-based
index flood model outperforms the updated FEH-QMED model with a significant improvement, which is robust in the sense
of different error measures, say by a reduction of 13.8% of the mean squared error of prediction, for the UK index flood
estimation.

Keywords Index flood estimation · Flood catchment descriptors · Flood Estimation Handbook (FEH)-QMED Model ·
Nonlinear effect of covariates · Spatial neighboring effect · Spatial error model

1 Introduction

Flooding is a major natural hazard in the UK [53], with
more than 5 million people living or working in flood prone
areas in England and Wales alone [54]. In fact, flooding
had caused extensive damage to infrastructure. For example,
there was $3.5 billion paid out by insurance industry due
to flood damage between 1998 and 2005 according to [21].
Therefore, flooding is a serious risk of huge economic
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loss in the UK, particularly in winter (c.f. [1]). As one of
the hydrological phenomena, flooding is a process that is
complex and uneasy to understand. Our basic objective, in
this study, is therefore to empirically investigate and assess
the reliability of, and explore a potential to improve, the
existing popular model for the UK index flood estimation.

Due to the emergence of modern data acquisition
techniques together with powerful computational tools,
voluminous hydrological data have been, and will continue
to be, collected. There is an urgent need to explore the
unknown and unexpected features in the flooding datasets
and assess the reliability of the existing models in the
literature. In particular, in hydrology, the issue of an
ungauged basin is a challenging problem because drainage
basins or waterways, in many parts of the world, are
ungauged or poorly gauged, due to the fact that the river
flow monitoring stations are mostly located at specific,
strategic locations only (c.f. [40]).
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It is a usual practice that hydrologists have to estimate
the design flood using available information from nearby
gauged sites and characteristics of locally regional flood
catchments when a development project is located at an
ungauged basin of a catchment area. This approach is
known as a regionalization procedure. It was proposed
by [47] for hydro-meteorological modelling with the
basic principle of “substitute time for space.” There are
several types of regionalization procedures available in the
literature (see, for example, [16, 17]). Among them, a
popular approach is the index flood procedure introduced
by [18], which requires estimation of an index flood. The
median value of annual maximum flow series has been
chosen as the base for the index flood, that is denoted
as QMED. The median means that half of all observed
annual maximum flow data at the site of interest are greater
than the QMED. In general, a return period, T , is the
length of an average time interval between occurrences
of two consecutive floods that exceed a threshold of
particular magnitude. The probability of (re)occurrence or
the so-called exceedance probability with the corresponding
magnitude is therefore thought to be 1

T
. This probability

is equal to a half for the QMED with T = 2, which
hence implies that the QMED stands for a flood with a
return period of 2 years. The focus in this paper is on
estimating this index flood at ungauged basins by using
an indirect method, such as regression models, to forge a
link between a hydrological parameter of index flood and a
set of catchment descriptors, based on the assumption that
the flood characteristics can be explained by the catchment
descriptors (c.f. [42]).

Different regression models have been developed for
estimating the index flood by using different catchment
descriptors. A well-established model of this kind in the
UK is the median annual maximum flood (QMED) model
given in Flood Estimation Handbook (FEH) (c.f. [30, 36]).
This model was first published in 1999 and later improved
in 2008 by the Centre for Ecology and Hydrology (CEH),
and has been widely applied in the UK, e.g., for flood
defense planning, flood risk analysis, new development
planning and rarity assessment of notable rainfalls or floods.
Actually, the FEH has become the industry standard used to
estimate local flood risk and develop resilient infrastructure.
For details, the reader is referred to [30], [36] and [33].
In the wider literature of hydrological applications, a direct
method of using arithmetic median or mean of annual
maximum flow data is preferable, in determining the scale
values (index flood), to the indirect statistical regression
models when flow data of 2–5 years are available, which
is however only possible at a gauged catchment area [28,
30]. The literature also shows that statistical indirect models
through regression methods, such as the QMED model,
are generally more accurate, for prediction of index flood

in ungauged catchment, than conceptual indirect models
(see, e.g., [9]), though the former may lack an ability to
provide physical interpretation or insight into other inter-
related factors in the flood process, causing possibly a large
amount of uncertainty. In a broader context, a reliable and
valid index flood estimation model is needed and the base
for mitigating the hazards of an infrequent extreme event
(say 1 in 1000 years event) through flood insurance (c.f.
[25]). It can also be used to estimate the scale values that are
crucial in determination of frequency and magnitude of the
flood peak discharges at a particular ungauged catchment
area when designing infrastructure and planning land
use [55].

Assessing and improving estimation of index flood at
ungauged basins still need a great deal of efforts to dedicate
to owing to a large amount of uncertainties associated with
index flood estimation procedures (c.f. [34, 50]). In this
study, we are focusing to explore two fundamentals on
the QMED type model of the FEH, or simply the FEH-
QMED model hereafter, in estimating the UK index flood,
on the basis of the flooding data of 586 gauged stations
around the UK: (i) assessing the reliability of the non-linear
functions of different catchment descriptors specified by the
updated QMED type model and (ii) exploring the potential
to improve the QMED type model. For these purposes, we
will choose the FEH-QMED model as a benchmark due to
its wide recognition and being taken as basis of most studies
on the flood risk estimation and modelling in the UK. The
updated flood information in conjunction with the gauged
stations and the high quality data on flood peak are available
through the National River Flow Archive. The Centre for
Ecology and Hydrology (CEH) has as well published the
FEH-CD ROM that provides a large number of catchment
descriptors, and now the service is made by a website:
https://fehweb.ceh.ac.uk/. These sources of data make it
possible for us to explore our assessment and improvement
analyses.

We are making our assessment and potential improve-
ment by proposing appropriate spatial analysis tools to be
applied to explore the flooding data set. In order to assess
the reliability of the non-linear effects of the catchment
descriptors identified by the FEH-QMED model, we will
suggest a spatial additive regression analysis (c.f. [39]) to
examine the non-linear effects of the catchment descrip-
tor covariates in flood index estimation. This is a kind of
semiparametric model [26], by which some unknown or
unexpected complex nonlinear features, if existed, would
be well identified from the data. Furthermore, in order to
check any potential spatial neighboring dependence in the
data, a diagnostic tool named Moran’s I test (c.f. [45, 48])
will be utilized to examine any significant dependence in the
regression residuals. In the literature, although spatial corre-
lation or neighboring impact has been noticed in the updated
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FEH procedure (c.f. [34, 35]), it appears to have only been
partially considered for improvement by using the QMED
model together with a transformation of the data from an
appropriately selected (nearby) gauged site in estimating the
index flood at an ungauged catchment (c.f. [33]). Differ-
ently from these references, in this study, by identification of
spatial dependence, we will further suggest a spatial flood-
ing model to explore any potential improvement over the
FEH-QMED model by fitting the data with the surround-
ing neighboring impacts to be more fully considered in our
model. Interestingly, we find that the additive analysis con-
firms the non-linear effects of the catchment descriptors
specified by the FEH-QMED model, while the Moran test
and a spatial error analysis show that the spatial autocorre-
lations significantly exist in our flood data. These facts lead
us to propose spatial autoregressive index flood estimation
models by more fully taking account of the spatial depen-
dence, which we will demonstrate outperform the updated
FEH-QMED model of [33] in improvement of prediction,
which is robust in the sense of different error measures,
say by a reduction of 13.8% of the mean squared error for
prediction of the logarithmic QMED.

The structure of the remaining sections is organized as
follows. Background information on the source of the UK
flood data, the index flood procedure and the equation
linking a certain hydrological parameters to a set of
catchment descriptors will be briefly introduced in Section
2. Section 3 presents the methodology to be used for our
spatial additive and error analyses of the UK flood data set.
The detailed analyses and results of the empirical study by
our suggested methods, including spatial additive analysis,
diagnostic autocorrelation test, spatial index flood model
analysis and evaluation, will be conducted and discussed
in Section 4. Section 5 concludes with the findings of this
study.

2 Data and Index Flood Estimation

We first introduce some background information on the
UK flood data source used in this study and on the index
flood procedure and the FEH-QMED model as a benchmark
needed in the following sections.

2.1 Data Source

We are using the data from the National River Flow
Archive (NRFA) to examine the FEH-QMED model for
index flood estimation in the UK. Two types of data
are used, including the observed flood peak data and
the physical catchment descriptors data (see Section 2.3
below for more details). The observed flood peak data
are from the HiFlows-UK project, which are available at

http://nrfa.ceh.ac.uk/data/search, while the data on physical
catchment descriptors are from the FEH CD-ROM 3.0,
which now can also be accessed through the website at
https://fehweb.ceh.ac.uk/. The observations for these two
data sets are based on the 602 monitoring stations around the
UK that were used in the scientific report of [36], published
by the Environment Agency. However, some updates and
changes have been made through the HiFlows-UK Notes.
The important changes include the list of the stations that
have been changed, either removed or added in the HiFlows-
UK project for improvement of the dataset. Out of the 602
stations, 6 have been changed to other station numbers with
the same station names due to incorrect information, 8 were
removed and 2 closed due to data quality. As a result, only
586 rural stations will be considered in this study below. The
locations for these 586 rural stations are showed in circle
in Fig. 1. This figure has been plotted by using ArcGIS
software with the background uploaded from Google Earth
map, and then overlaid with the location data of the 586 river
flow monitoring stations considered in this study.

2.2 The Flood Regionalization Procedure

If flood records are insufficient, regionalization technique is
usually required. In fact, availability of the past flow data
has always been problematic to hydrologists in estimating
flood at the sites of interest such as where projects are to
be designed or developed (see, e.g., [18, 28, 29]). Applying
flood frequency analysis without use of regionalization
at the sites with insufficient length of flow data records
introduces significant uncertainties into the flood estimates.
By regionalization technique, hydrologists can utilize the
available data and information from nearby gauged stations
to estimate the flood at the ungauged sites of interest. By
[18], the T -year return flood (say the QMED for T = 2) at a
given site can be expressed as the product of the index flood
(i.e., QMED) and the dimensionless regional growth factor
for the return period of T years. According to [28], the issue
of estimation of the regional growth factor is well studied
in the literature, while the main problem lies in estimation
of the index flood. This research is therefore focused on
improvement of the existing methodology on estimation of
the index flood, denoted by μQ below. Note that the index
flood μQ, or QMED, plays an important part of the FEH
statistical method, as shown in [33, 34].

There are various issues in the regionalization procedure
with the estimation of the index flood [28]. At the gauged
sites, an estimate of μQ can be obtained directly by
calculating the arithmetic median of the available annual
maximum flood flow observations (i.e., QMED). However,
at ungauged sites, indirect methods have to be used in
estimating μQ (or QMED) and there is a large amount
of uncertainty associated with the estimate [34]. The most
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Fig. 1 Locations of the 586 gauging stations on rural catchments, with the background uploaded from Google Earth map
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widely used indirect methods are multiregression models,
which link μQ to a set of appropriate morphological and
climatic descriptors of the basins through a power form
equation [9, 28]:

μQ = ax
β1
1 x

β2
2 . . . x

βp
p , (1)

where xi is the ith catchment descriptor or some function of
it, for i = 1, · · · , p, with p the number of the catchment
descriptors taken as the explanatory variables for the model,
and a and βi are the model parameters. Note that in the
flood regionalization, it is a complex issue deciding an
appropriate model structure to link the covariate variables of
the chosen catchment descriptors to the dependent variable
of river flow. Theoretically, it is impossible to know the
“true” model structure (c.f. [55]). Therefore, in practice,
hydrologists tend to use some familiar model structure such
as the log linear model as indicted in Eq. (1), which is easy
to deal with and apply mathematically. By this approach,
many index flood estimation models have been developed
(c.f. [2, 11, 27, 44, 46, 49]), including those with efforts for
improved models [34, 50, 55] (see also [8] for the guidelines
on choice of suitable methods and [55] on the potential
difficulties for the index flood estimation and modelling).
Among, the QMED model published by Flood Estimation
Handbook (FEH) [30] is a well-established one for the flood
data in the UK.

2.3 The FEH-QMEDModel

To introduce the benchmark FEH-QMED model, we need
provide some more information on two types of data used
in this study.

Typically, there are many flood peaks associated with
individual storm events, recorded as continuous time series
of streamflow discharges throughout the year. The type
of the flood peak data used in this study is the annual
maximum (AM) series formed by the maximum discharge
in each year, yielding the series {w1 . . . wn}, with wi for the
maximum discharge in the ith year of the n-years record.
The AM series can be used to estimate the probability that
the maximum flood discharge in a year exceeds a threshold
of particular magnitude, say q. This probability is called
the annual exceedance probability and can be estimated by
1
n

∑n
j=1 I (wi > q), where I (A) is an indicator function

with value 1 if A is true and 0 otherwise. The AM
series from the 585 stations, with a varying length from
7 to 127 years, will be used to determine the important
hydrological parameter in the index flood estimation model,
i.e., the median annual maximum flood (QMED) for the
index flood.

The CEH (Central for Ecology and Hydrology, formerly
known as the Institute of Hydrology, IH) in the UK
has also published a CD ROM (c.f. [30]) containing a

modified digital terrain model, called Institute of Hydrology
Digital Terrain Model (IHDTM), that has been developed
from digitally held rivers and contours taken from the
Ordinance Survey 1:50 000 map. The calculation of
catchment descriptors in the IHDTM is done through using
gridded elevation data. The IHDTM can automatically
derive catchment boundary by including the raster data
set of drainage path direction based on the steepest route
to the neighboring grid nodes in 50 m resolution. This
boundary can be applied to compute a large number of
catchment descriptors. Nevertheless, the variables that have
previously been found to be useful in flood risk study will
be included in this study (see Table 1 below for details). The
selected characteristic variables are based on [36] who were
responsible for improving the original FEH-QMED model,
with the updated model, given in Equation (2), simpler but
outperforming the original one. We will take this updated
model as a benchmark in this study. The observations of all
the variables in Table 1 are based on the same 586 stations
around the UK.

The updated FEH-QMED model by [36] and [33, 35]
uses the median annual maximum flow (QMED) as an
index flood for the ungauged catchment flood estimation.
The development of this model is based on Eq. (1) that
has been linearized by taking logarithm on both sides of
(1) for parameter estimation by using generalized least
squares or maximum likelihood method for model (2) [19,
51, 52]. The variable selection is carried out by using an
exhaustive search to find a relatively small set of variables,
with criteria such as the coefficient of determination R2, the
adjusted R2 or the predicted error sum of squares applied,
providing a good statistical fit to the QMED. This index
flood regression model links the QMED with a set of
catchment descriptors, namely the catchment area (AREA),
the standard average annual rainfall (SAAR), the index of
flood attenuation attributable to reservoirs and lakes (FARL)
and the based flow index (BFIHOST), explained in Table 1,
where the observations for those variables are also based on
the same 586 stations around the UK. Equation (2) below is
a formula that is widely used in the UK by flood hydrologist
to estimate the median flood at an ungauged catchment:

ln(QMED) = 2.1170 + 0.8510 ln(AREA)

−1.8734

(
1000

SAAR

)

+ 3.4451 ln(FARL)

− 3.080BFIHOST 2. (2)

In practice, the quality of flood data has to be ensured
before it can be used in any hydrological application
analysis. However, some unknown or unexpected features
in the flood data cannot be controlled due to its nature.
For example, the water level or river flow that represents
the flood peak discharge at a particular point in a river
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Table 1 Summary of
catchment descriptors Descriptors name Unit Range Note

AREA km2 [0;∞) Catchment drainage area

SAAR mm [0;∞) Average annual rainfall

FARL [0; 1] Flood attenuation by reservoirs and lakes

BFIHOST [0; 1] Base Flow Index (BFI) derived from a
spatial dataset of hydrological soil type
and land-uses. It is used as a measure of
hydrological soil properties

has well-defined spatial effect due to the flow of the river
and the lay of the land, while the direction in which the
water will flow within a catchment is generally known.
Therefore, the local factors influencing the index flood may
not be adequately represented in the regression models,
and it may be beneficial to adjust the estimates by using
local data from the neighboring gauged catchments [33].
The Flood Estimation Handbook (FEH) [30] recommended
the use of the data transferring procedure together with
the QMED regression model when estimating the index
flood at ungauged sites, where one or more suitable gauged
sites can be found among the gauged catchments that are
geographically close and hydrologically similar. There is no
specific guidance as to the limit of the geographical area or
necessary degree of hydrological similarity. Nevertheless,
studies have shown that geographical proximity gives
superior impact in estimating the index flood at ungauged
sites in comparison with hydrological similarity [22,
34, 43]. Consecutive studies by [33–35] concluded that
geographical proximity representing the spatial impact in
the data transferring procedure is very important and useful
to improve the regression results.

As [33] has showed, the new FEH-QMED model (2) has
been developed by using observations of the spatial data
from 602 guaged stations, instead of the 728 stations in
the original model, together with the revised data-transfer
method that performs better in estimating the index flood
at an ungauged catchment. We will use it as a benchmark
model as a comparison with our developed models in the
following sections.

3Methodology

It is interestingly noted that the FEH-QMED model (2) is a
linear multiple regression model with non-linear effects of
the catchment descriptors specified. We are first assessing
the reliability of this model in estimating the UK index
flood, and then aim to develop an improved model for
a better index flood estimation. Here the median annual
maximum flood (QMED) in logarithm is considered as the
response variable, Y = ln(QMED), which is a function
of the four predictor variables, i.e., the catchment drainage

area (AREA), the average annual rainfall (SAAR), the flood
attenuation by reservoirs and lakes (FARL), and the base
flow index by hydrology of soil type data (BFIHOST).
Two assumptions underlying (2) are as follows: (i) the
linearity between Y = ln(QMED) and the explanatory
covariates

(X1, X2, X3, X4) = (ln(AREA),
1000

SAAR
, ln(FARL),

BFIHOST 2), (3)

and (ii) the independence in the residuals of the multiple
regression model (2). These will be assessed by using
spatial additive regression analysis to investigate the model
structure of the explanatory variables and by spatial error
analysis for diagnostic test on any dependence in the
residuals, in order to achieve an improved model for index
flood estimation. The background information on these
methods is provided in Sections 3.1 and 3.2.

3.1 Spatial Additive Analysis

Suppose the response variable, Y , and the p = 4 explana-
tory variables, X1 . . . Xp, given above, are observed with
the spatial data, (Yi = Y (si), Xi1 = X1(si), . . . , Xip =
Xp(si)), i = 1, 2, · · · , n, from the n = 586 gauged
stations around the UK (see Section 2.1), where si =
(ui, vi) stands for the location in (latitude, longitude) of the
ith gauged station. In general, the mean of Yi is a func-
tion of Xi1, . . . , Xip, say μi = E(Yi |Xi1, . . . , Xip) =
f (Xi1, . . . , Xip). If the FEH model (2) is true, then it is a
linear regression

μi = β0 +
p∑

j=1

βjXij , (4)

where it is often assumed that ei = Yi − μi ∼
N(0, σ 2) for i = 1, 2, · · · , n, with ei’s independent.
Equation (4) indicates that the covariates are multiplied by
the coefficients, β1, . . . , βp for prediction of Yi .

To explore if Eq. (2) or (4) holds for the given flood data,
we are considering a more general model, an additive spatial
regression model (c.f. [24, 26, 39]) that is more flexible
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than Eq. (4) by replacing the linear predictor with a sum of
smoothing functions of the covariates in the form

μi = β0 +
p∑

j=1

fj (Xij ), (5)

where the smooth functions, fj ’s, are unknown non-linear
functions of the p = 4 covariates (X1, X2, X3, X4)

defined in Eq. (3) in this study, and for identifiability it is
often supposed that Efj (Xij j) = 0 for j = 1, · · · , p.
Here although we may assume ei = Yi − μi satisfies
the conditions as specified under Eq. (4), but it is not
necessary for estimation of Eq. (5) as showed in [39] and
[26]. By the data (Yi, Xi1 . . . Xip), i = 1, 2, · · · , n, we
can obtain the estimates of the unknown (nonparametric)
functions, f̂j (Xij ) for j = 1, · · · , p, and β̂0, by using
the so-called backfitting algorithm or other semiparametric
smoothing methods; for details, the reader is referred to the
related statistical references (c.f. [24, 26, 39]). We did the
estimation by the statistical software R with the package
“GAM” in the analysis of data in Section 4 below. Clearly,
if the resultant estimate f̂j (Xij ) is a linear function of Xij

for all j = 1, 2, · · · , p, then it just demonstrates that Eq. (2)
or (4) is true, i.e., the non-linear effects of the catchment
descriptors (AREA, SAAR, FARL, BFIHOST) identified in
Eq. (3) (c.f. [36]) are well reliable in the FEH-QMED model
(2).

3.2 Spatial Dependence and Autoregressive Analysis

After a regression model such as Eq. (4) or (5) is established,
we need to check if the obtained model is appropriate by
examining the residuals of the regression. In applications,
we can define the residuals ei , i = 1, 2, · · · , n, as above,
with βj ’s and fj ’s based on their estimated values for
calculating the residuals in Eqs. (4) and (5), respectively.
Two statistical tests to detect the presence of spatial
autocorrelation in the residuals are introduced in this study.
Here a spatial weight matrix (c.f. [4]) need to be constructed
based on the locations of the n = 586 monitoring stations.
It is defined as a n × n matrix, W , for a set of n locations,
with elements wij indicating whether the locations si and sj
of the ith and the j th observations are spatially close, where
i �= j , and wii = 0 as usual.

Two types of spatial weight matrices are popular, which
are contiguity based and distance based, respectively, to be
considered in this study. For a contiguity-based matrix, the
(i, j)th element is define as

wij =
{

1, if i is contiguous to j,

0, otherwise.
(6)

Here the weight wij equals one if stations i and j are
neighbors in space, and zero otherwise, by the definition

of neighbor based on sharing triangle edges using the
Delaunay triangulation concept (c.f. [7, 12, 23, 41]). An
advantage with this weight matrix lies in its representation
of the proximal action that is an immediate action or
neighboring correlation. For another type of spatial weight
matrix based on distance, the element is defined as

wij =
{

1, 0 < dij ≤ D,

0, dij > D,
(7)

where dij is the distance between the locations i and j , with
D a defined distance band. Equation (7) indicates that the
stations within a defined distance band from each other are
categorized as neighbors and have spatial weight equal to
one, and zero otherwise. Typically, the upper bound D is
taken as the greatest value of the Euclidean distance among
the list of the first order nearest neighbors (c.f. [5, 6]). An
advantage with this type of weight matrix is for its ability to
represent a kind of short-distance action or quasi-proximal
action. Both types need to be row-wise standardized so that
the weights sum up to one on each row when applied.

We comment that the two types of spatial weight matrices
above are much easier to apply than other more complex
weight matrices. For example, these two weight matrices
only select a relatively small number of the most relevant
neighboring gauged sites to be taken into account in
modelling, and are hence often more attractive from the
application perspectives. For information on other types of
more complex weight matrices like using a weight matrix
that has values decreasing as distances increase, the reader
is referred to the above-mentioned references, which would
lead to more neighboring gauged sites to be taken into
account in modelling. Whether we should use a more
complex spatial weight matrix or not is an interesting model
selection issue worth investigation. This is an issue that is
beyond the scope of this paper and worth more study, so we
will leave it for a future work.

Our first test for spatial dependence in the residuals of a
regression model is by Moran’s I-statistic [45]. It is the most
widely used method in detecting spatial autocorrelation of
geo-referenced data (see, e.g., [20, 32, 37]). With a spatial
weight matrix W as defined in Eq. (6) or Eq. (7), Moran’s I
formula for a row-wise standardized weight matrix W reads
as

I = e′We

e′e
, (8)

where e = (e1, e2, · · · , en)
′ is an n × 1 vector of the

regression residuals. The statistic I asymptotically follows
a standard normal distribution under the null hypothesis
of no spatial dependence (c.f. [13–15]). In R, this test is
implemented using function lm.morantest.

The Moran’s I test statistics has high power against a
range of spatial alternatives, but does not provide much
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help in terms of which alternative spatial regression model
would be most appropriate. An alternative test for spatial
dependence is called Lagrange multiplier (LM) test, which
allows a distinction between spatial error models and spatial
lag models. Unlike the Moran test, the LM test relies on a
structured hypothesis for test of spatial error dependence or
spatial lag dependence.

The LM test for spatial error dependence, or the so-called
LM error test, is based on the least-squares residuals of
spatial error model (11) below involving a spatial weight
matrix W , conditional on having a λ parameter not equal
to zero in the model. The LM error test statistic takes the
form [4]:

LMerr = (e′We/s2)2

T
∼ χ2(1), (9)

with s2 = e′e/n, e denoting a vector of the least-squares
residuals and T = tr[(W + W ′)W ]. The LM test for spatial
lag dependence, or the LM lag test, is based on the residuals
from the spatial lag model (12). It can be used to examine
whether inclusion of the spatial lag term eliminates spatial
dependence in the residuals of the model. This test differs
from the two tests outlined above because it allows for
the presence of the spatial lag variable in the model. It is
conditional on having a ρ parameter not equal to zero in
the model, rather than relying on the least-squares residuals.
The LM lag test takes the form [4]:

LMlag = (e′Wy/s2)2

nJ
∼ χ2(1), (10)

where nJ = T + (WXβ)′M(WXβ)/s2, T = tr[(w +
w′)w], M = I − X(X′X)−1X′. Both LM tests and
their robust forms are inplemented in the R function
lm.LMtest.

As mentioned above, two cases of spatial dependence
could arise in Eq. (4) or (5). A spatial error model
is appropriate when the interest is in correcting spatial
autocorrelation due to use of spatial data, irrespective of
whether the model of interest is spatial or not. The spatial
error model can be expressed as

y = Xβ + e, (11)

e = λWe + ε, ε ∼ N(0, σ 2In).

Here the n × 1 vector y contains the n observations of the
dependent variable Y , and X represents the usual n×(1+p)

data matrix containing the explanatory variables from model
(4), and W is a spatial weight matrix and the parameter λ is
the coefficient on the spatially correlated errors. The (1 +
p) × 1 vector of parameters, β, reflects the influence of the
explanatory variables on variation in the dependent variable
Y . We comment that, as often done in practice, assumption
of normal distribution for the error vector ε ∼ N(0, σ 2In),
with In an n×n identity matrix, is applied in modelling here,

which can at least be seen as an approximation, in particular
at a stage of investigation with no further information on the
distribution. Under such kind of Gaussian assumption (no
matter if the true error is Gaussian or not), quasi-maximum
likelihood estimation (QMLE) can be applied for estimation
of Eq. (11) (see, e.g., [38] for detail of justification on
the QMLE in theory). We have also provided a plot of
kernel density estimate, together with a normal distribution
of the estimated mean and variance, for the data of Y =
ln(QMED), which appears to be normally approximated
in distribution as indicated in Fig. 2. Maximum likelihood
estimation of the spatial error model [4] can be implemented
by the R function errorsarlm.

The alternative model is a spatial lag model, which is
appropriate when the focus is on the spatial interactions of
the dependent variable. Here the existence and strength of
spatial interactions are the focus of interest to be assessed.
The spatial lag model takes the form:

y = ρWy + Xβ + ε, (12)

ε ∼ N(0, σ 2In),

where y, X and W are similarly defined as in Eq. (11).
The parameter ρ is the coefficient of the spatially lagged
dependent variable, Wy, and the parameter β reflects the
influence of the explanatory variables on variation in the
dependent variable Y . Maximum likelihood method for
estimating the parameters of this model [4] can be carried
out with the R function lagsarlm.

Fig. 2 A plot of kernel density estimate (kde), together with a normal
distribution of the estimated mean and variance, for the data of Y =
ln(QMED)
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4 Empirical Spatial Index Flood Estimation:
Results

In this section, we are first conducting empirical spatial
additive assessment of the non-linear effects of the
covariates specified by the FEH-QMED model given in
Eq. (2) and then attempting to develop an improved spatial
autoregressive flooding model.

4.1 Empirical Spatial Additive Assessment
of the FEH-QMEDModel

The analysis starts with fitting the dataset by applying
general linear model (4)), estimated by using an R function
“lm,” with the identified covariates, given in Eq. (3), used
in the FEH-QMED model (2). Then we are applying the
spatial additive model (5) in Section 3.1, estimated by the
“gam” function of the R package “mgcv” [56], to assess if
the nonlinear parametric transformations of the catchment
descriptors, in Eq. (3), as covariates are reliable in fitting the
linear model (4), as given by the FEH-QMED model (2), for
the data.

The results from fitting the general linear model (4)
and the spatial additive model (5), with Y = ln(QMED)

and the four catchment descriptors in Eq. (3), for the UK
flooding data at the 586 gauged stations are shown in
Table 2, and the estimated functions of fj (·)’s in Eq. (5)
are displayed in Fig. 3. Here the coefficients of the FEH-
QMED model given in Eq. (2) (c.f. [36]) are also provided
in Table 2 for an easy reference and comparison.

As noticed in Section 3.1, the FEH-QMED model (2)
is represented actually in the form of linear regression
model (4). The estimated values from the linear model
(4) and the FEH-QMED model shown in Table 2 are
essentially the same with slight difference owing to using
slightly different data sets (c.f. Section 2.1 for detail about
the reduced number of the gauged stations considered in
this paper). Comparing the linear model with the additive
model in Table 2 and Fig. 3, we can see that statistically,
both models show the same conclusion with regard to

the significance of the individual covariate effects. The
equivalent degrees of freedom (edf, i.e., the number of
free parameters for usual parametric models) for all the
functions of the four variables are greater than or equal to
1, and the F-statistic values indicate them being significant
with their p values less then the significance level of 5%,
under the additive model, in Table 2. In terms of model
comparison by adjusted R-squares, it is concluded that both
the spatial additive and the linear models are very similar
with the adjusted R-squared values being 0.938 and 0.935,
respectively. Although the adjusted R-square for the additive
model (5) is slightly larger, the linear model (4) has better
interpretation. Furthermore, for the estimated smoothing
functions of the additive model (5) with p = 4, plotted in
Fig. 3, all the component functions with the four covariates
given in Eq. (3) look to be rather linear. This confirms that
the specified nonlinear effects of the catchment descriptors
in the FEH-QMED model (2) look satisfactorily reliable for
the UK flooding data.

4.2 Empirical Tests of Spatial Autocorrelation

We are further investigating whether there is any strong
spatial autocorrelation in the residuals of the spatial additive
or the linear FEH-QMED model. In fact, if the residuals
were a white noise data set, then there should be none
of significant autocorrelation when it is seen as a series,
which is obviously violated by a simple autocorrelation
plot of the residuals as a series for the linear model in
Table 2, provided in Fig. 4. We therefore do the spatial tests
more formally by using Moran’s I and Lagrange multiplier
tests as sketched in Section 3.2. This study considers two
types of spatial weight matrices that are widely used in
estimating the relationship among the spatial observations,
that is the contiguity-based and the distance-based matrices.
The spatial neighborhoods under contiguity- and distance-
based weights are displayed in panels (a) and (b) of Fig. 5,
respectively (see Section 3.2 for detail on how to construct
these spatial weight matrices with row-wise standardized
elements).

Table 2 Comparison between
general linear and additive
models

Coefficient QMED model Linear model Additive model

Intercept 2.1170* 2.1826* 3.6263*
edf F-value Prob

log(AREA) 0.8510* 0.8527* 2.561 1218.13 0.000
1000/(SAAR) − 1.8734* − 1.8410* 5.098 208.99 0.000
log(FARL) 3.4451* 3.0335* 4.655 24.13 0.000
(BFIHOST)2 − 3.0800* − 3.3479* 1.000 1116.56 0.000

Adjusted R-square 0.935 0.935 0.938

edf, effective degree of freedom
*The estimated parameter is significant at 0.01
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Fig. 3 Graphical display on
effects of four catchment
descriptors in additive model

Six tests have been performed to assess the spatial
dependence in the residuals. A summary of the six
diagnostics tests is reported in Table 3. First, Moran’s I
score of 0.213 is highly significant, indicating a strong

Fig. 4 A simple autocorrelation plot for the residuals seen as a series

spatial autocorrelation in the residuals, which are not white
noise data. This conclusion is further confirmed by other
five tests, including the simple Lagrange multiplier tests for
spatial lag dependence (under the spatial lag model (12)
and for spatial error dependence (under the spatial error
model (11), and the robust Lagrange multiplier tests for
spatial lag dependence in the presence of error dependence
and for spatial error dependence in the presence of spatial
lag dependent variable, and a portmanteau test. From
Table 3, it clearly shows that both simple tests of the
lag and the error are significant, indicating presence of
spatial autocorrelation in the residuals for both types of
weight matrices. The robust tests give a better understanding
in terms of which alternative spatial dependence would
be most appropriate for model fitting, showing that the
spatial error model appears more acceptable than the lag
model.

4.3 An Improved Index Flood Estimation: Empirical
Spatial Autoregressive Flooding Analysis

Based on the features identified in Sections 4.1 and 4.2,
we are attempting to find an improved model for the UK
index flood estimation. We consider fitting both the spatial
error and the spatial lag models introduced in Section 3.2 to
the UK flooding data by using both types of spatial weight
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Fig. 5 Illustration of spatial
relationship in the UK flood
peak data

matrices considered above. The results are summarized in
Table 4, which gives the estimated values for each of the
parameters in all models considered in this analysis, where
the value in the round bracket represents the standard error
of the estimate. All the estimated regressive coefficients
are found to be significant for each model. In addition, the
spatial coefficients λ and ρ are significant in both the spatial
error and the spatial lag models, given in Eqs. (11) and (12),
respectively, for both types of spatial weight matrices. These
demonstrate that the spatial relationship in the UK flood
peak data can be characterized by both contiguity-based and
distance-based weight matrices.

We compare both spatial error and spatial lag models
associated with the two types of spatial weight matrices with
the benchmark linear FEH-QMED model (Eq. 2). Model
evaluation and selection among different fitted models are
based on Akaike information criterion (AIC). The AIC is
one of the most popular approaches in model selection
that compares multiple models by taking into account both
fitting accuracy and model parsimony [3, 10]. A preferred

model can be selected via a minimal value of the AIC
defined by

AIC = 2K − 2 ln(L), (13)

where K is the number of estimated unknown parameters
in the model and L is the maximum value of the
likelihood function for the model. In terms of the AIC
value, it is clearly shown in Table 4 that taking account
of the spatial dependence in modelling can improve the
model performance over the FEH-QMED model. We
also see that the spatial error model (11) outperforms
the spatial lag model (12), with use of the contiguity
weight matrix attaining the lowest AIC value of 519.34,
which is significantly lower than the AIC values for other
models.

Moran’s I test is also examined for the residuals in
both the fitted spatial error and spatial lag models to
assess whether these spatial flooding models are sufficiently
acceptable. The results of the p values (denoted by Prob)

Table 3 Diagnostics for spatial
dependence in the regression
residuals

Test Contiguity matrix Distance matrix

DF Value Prob DF Value Prob

Moran I (error) - 0.213 0.0000 - 0.162 0.00000

Lagrange multiplier (lag) 1 20.961 0.0000 1 19.563 0.00001

Lagrange multiplier (error) 1 77.196 0.0000 1 76.611 0.00000

Robust Lagrange multiplier (lag) 1 3.306 0.0690 1 4.672 0.03065

Robust Lagrange multiplier (error) 1 59.541 0.0000 1 64.721 0.00000

Lagrange multiplier (SARMA) 2 80.502 0.0000 2 84.284 0.00000
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Table 4 Comparison between
general linear and spatial
autoregressive models

Coefficients QMED Linear Contiguity matrix Distance matrix

SpErr SpLag SpErr SpLag

Intercept 2.1170 2.1826 2.1494 1.6800 2.1430 1.6576

(0.0848) (0.0911) (0.1385) (0.1024) (0.1454)

log(AREA) 0.8510 0.8527 0.8497 0.8320 0.8472 0.8327

(0.0131) (0.0129) (0.0137) (0.0130) (0.0137)

1000/(SAAR) − 1.8734 − 1.8410 − 1.8181 − 1.6554 − 1.7923 − 1.6499

(0.0523) (0.0748) (0.0660) (0.0796) (0.0674)

log(FARL) 3.4451 3.0335 2.9526 2.8210 3.1500 2.9076

(0.2629) (0.2725) (0.2617) (0.2627) (0.2596)

(BFIHOST)2 − 3.0800 − 3.3479 − 3.2655 − 3.1228 − 3.2959 − 3.1251

(0.0969) (0.1144) (0.1077) (0.1169) (0.1087)

Lambda 0.4351 0.5001

(0.0546) (0.0599)

Rho 0.0975 0.1007

(0.0220) (0.0232)

AIC 575.90 519.34 558.03 525.78 559.49

The values in the () represent as standard error for each estimated parameter
SpErr, spatial error model; SpLag, spatial lag model

given in Table 5 clearly show that spatial autocorrelation
is still existent in the spatial lag models but not in the
spatial error models. This indicates that allowing the FEH-
QMED model error terms modelled by a spatial error model
with a contiguity-based weight matrix is acceptable and
can significantly improve the model fitting with the spatial
effect well characterized. This further confirms that the
contiguity-matrix-based spatial error model is more suitable
for the UK flooding data than the spatial lag model and other
models given in Table 4.

4.4 Cross-validation Assessment of Spatial Index
Flood EstimationModels in Prediction

Model evaluation is important in assessing the quality and
accuracy of the developed models for practical use in
prediction. The key point in assessing the performance of a
developed model is to accurately measure the ability of its
prediction at an ungauged site by prediction error, ε̂j , say,
at site j . Note that the predicted value from a spatial model
is not as easy to compute as that from a linear regression

model because it involves spatial neighboring effects in the
regression.

This study will suggest the evaluation of a method of
computing the predicted values by using leave-one-out cross
validation (LOOCV) technique. In this method, for each
left-out gauged site j of the n = 586 observations of the
data set, (n− 1) of them are used for model training and the
j th left-out observation is for testing of the prediction at the
j th site. By using the training data of (n − 1) observations
(except the j th site), we can estimate the model parameters,
denoted by β̂ and λ̂ or ρ̂ in model (11) or (12), which are
used to get the predicted value ŷj that is shown in Table 6,
where wik , k �= j , is the (i, k)-th element of standardized
spatial weight matrix, W , i.e.,

∑
k �=j wik = 1, for each j .

This process is repeated for j from 1 until n.
Hence, the prediction error for each model can be

computed as follows

ε̂j = yj − ŷj , j = 1, 2, · · · , n, (14)

which we will call leave-one-out (LOO) prediction errors,
or simply LOO errors. The squared or absolute values

Table 5 Diagnostics for spatial
dependence in residuals of
spatial autoregressive models

Spatial econometric model Moran I test

Contiguity matrix Distance matrix

Value Prob Value Prob

Spatial lag model 0.1600 0.0000 0.1230 0.0000

Spatial error model − 0.0114 0.6889 − 0.0029 0.9459
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Table 6 Computation of the
predicted values Model Estimation Prediction

(using i = 1, 2, . . . , j − 1, j + 1, . . . , n) (j = 1, 2, . . . , n)

Linear yi = xiβ + εi ŷLS
j = xj β̂

Spatial error yi = xiβ + εi; εi = λ
∑

k �=j wikεk + ei ŷSE
j = xj β̂ + λ̂

∑
k �=j wjk(yk − xkβ̂)

Spatial lag yi = xiβ + ρ
∑

k �=j wikyk + εi ŷSL
j = xj β̂ + ρ̂

∑
k �=j wjkyk

of the LOO errors (simply called the squared or absolute
errors) are widely applied in evaluating model performance
in particular for prediction. Their respective simple arith-
metic averages are just the popular LOO cross-validation
(LOOCV) mean squared error (MSE) and mean abso-
lute error (MAE) in machine learning (c.f. [31]). In [33],
an error measure equivalent to MSE, called root mean
squared error (RMSE), is applied, which is a square root of
MSE. These error measures are defined, for example, for
prediction of Y = ln(QMED), by

MSE = 1

n

n∑

j=1

ε̂2
j = 1

n

n∑

j=1

(yj − ŷj )
2, (15)

RMSE =
√
√
√
√1

n

n∑

j=1

ε̂2
j =

√
√
√
√1

n

n∑

j=1

(yj − ŷj )2, (16)

MAE = 1

n

n∑

j=1

|ε̂j | = 1

n

n∑

j=1

|yj − ŷj |. (17)

Clearly, the smaller the MSE, RMSE or MAE, the better
the model performs in prediction. but their values are scale
dependent. An alternative measure that is based on absolute
percentage error, |(yj − ŷj )/yj |, is the mean absolute
percentage error (MAPE),

MAPE = 1

n

n∑

j=1

|ε̂j |
|yj | = 1

n

n∑

j=1

|yj − ŷj |
|yj | , (18)

which is scale free. However, a shortcoming associated
with this measure of MAPE is that it is very sensitive to
a small number of outlying prediction errors, in particular
potentially with small values of |yj |’s. We have also
reported this measure of MAPE in model assessment below.
We however should take care when explaining this measure
for flood prediction, where we are concerned with extreme
(large) values of QMED, rather than its small values, which
we shall address below.

We are first comparing our proposed spatial flooding
models (11) and (12), in terms of the MSE, RMSE and
MAE, with the updated FEH-QMED model that is based
on a revised data-transfer method of [33] with spatial
autocorrelation partially taken account of in prediction. For
detail on the updated FEH-QMED model in prediction, the
reader is referred to [33] (page 5), where it is recommended
that the estimates obtained at ungauged sites by using a
regression model should be adjusted by transferring data
from one nearby gauged site (if available) as there is a
relatively dense gauging network in the UK. Differently
from [33], the spatial dependence in our spatial flooding
models (11) and (12) is taken into account by the spatial
autoregressive models through considering two types of
spatial neighboring relationship (i.e., contiguity-based and
distance-based spatial weight matrices).

The results for prediction of Y = ln(QMED) in terms
of the MSE, the RMSE and the MAE for different models
are summarized in Table 7. Note that the RMSE measure

Table 7 Comparison of model
performance for
Y = ln(QMED) by LOOCV
method

Model Spatial Performance measure

weight

MSE1 RMSE2 MAE3 MAPE4

Kjeldson and Jones (2010) - 0.1586 0.3982 0.2981 0.3274

Spatial error Contiguity 0.1367 0.3697 0.2701 0.2924

Distance 0.1388 0.3725 0.2724 0.2994

Spatial lag Contiguity 0.1509 0.3885 0.2915 0.2905

Distance 0.1514 0.3891 0.2922 0.2868

1MSE = mean square error for prediction of Y = ln(QMED)
2RMSE = root mean square error (i.e.,

√
MSE) for prediction of Y = ln(QMED)

3MAE = mean absolute error for prediction of Y = ln(QMED)
4MAPE = mean absolute percentage error for prediction of Y = ln(QMED)

Values in italic indicate the smallest value in each of the 4 error measures
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Table 8 Comparison of model
performance for
QMED = exp(Y ) by LOOCV
method

Model Spatial Performance measure

weight

MSE1 RMSE2 MAE3 MAPE4

Kjeldson & Jones (2010) - 2851 53.39 25.08 0.3074

Spatial error Contiguity 2281 47.76 21.78 0.2904

Distance 2369 48.67 22.38 0.2914

Spatial lag Contiguity 2730 52.25 24.24 0.3125

Distance 2790 52.82 24.36 0.3129

1MSE = mean square error for prediction of QMED
2RMSE = root mean square error for prediction of QMED
3MAE = mean absolute error for prediction of QMED
4MAPE = mean absolute percentage error for prediction of QMED

Values in italic indicate the smallest value in each of the 4 error measures

for prediction of Y = ln(QMED) was considered by [33].
It is seen from Table 7 that our 4 proposed spatial flooding
models, including the spatial error model with contiguity-
based weight matrix (sperrcon), the spatial lag model with
contiguity-based weight matrix (splagcon), the spatial error
model with distance-based weight matrix (sperrdis) and
the spatial lag model with distance-based weight matrix
(splagdis), all look to outperform the updated FEH-QMED
benchmark model of [33] from the prediction perspective
in terms of both the MSE, the RMSE and the MAE. Here

for ease of comparisons, the smallest value for each error
measure among the 5 models is highlighted in italics in the
table. Clearly, the spatial error model with contiguity-based
matrix (sperrcon) performs the best in terms of the MSE, the
RMSE and the MAE. The percentage of the improvement of
this sperrcon flooding model over the updated FEH-QMED
model of [33] in reduction of the MSE, the RMSE and the
MAE is equal to (0.1586 − 0.1367)/0.1586 = 13.81%,
7.15% and 9.48%, respectively. Therefore, the sperrcon
model significantly beats the [33] benchmark model, in

Fig. 6 The scatter plots of the
LOOCV based predicted values
(y-axis), versus the actual values
(x-axis), of the QMED by the 4
models of sperrcon (spatial error
model with contiguity weight
matrix), splagcon (spatial lag
model with contiguity weight
matrix), sperrdis (spatial error
model with distance weight
matrix) and splagdis (spatial lag
model with distance weight
matrix), and the [33] model.
Here the dashed lines stand for
the predicted and the observed
values being equal in the
sub-panels
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terms of the MSE, RMSE and MAE, for the UK index flood
estimation, which is consistent with the model selected by
the AIC score in Table 4. As mentioned above, we have also
reported, in the 6th column of Table 7, the performance of
our 4 proposed spatial flooding models against the model of
[33] in terms of the MAPE, defined in Eq. (18). Although in
terms of this measure of MAPE it seems to show in Table 7
that the spatial lag models perform better than the spatial
error models, but the difference in the MAPE between them
is small, and note our sperrcon model still beats the model
of [33] in prediction of Y = ln(QMED) with a reduction
of the MAPE by (0.3274−0.2924)/0.3274 = 10.69%. Here
we should realize that this MAPE measure may be sensitive
to a small number of outlying APE values particularly at the
extreme quantile level, say, from 0.998 to 1 (c.f. the quantile
curves for the spatial lag models are under those for other
models as indicated in the right-hand sub-panel of panel (a)
of Fig. 7).

Moreover, notice that it is the QMED that is of a direct
interest, rather than Y = ln(QMED) as an intermediate
step, in the practice of index flood estimation. We have

therefore also considered the four error measures of MSE,
RMSE, MAE and MAPE for the prediction of the QMED

directly, based on QMED = exp(Y ) with Y predicted as
shown above, which are reported in Table 8. Here the MSE,
RMSE, MAE and MAPE for prediction of the QMED are
defined similarly to those for Y = ln(QMED), with yj and
ŷj in Eqs. (15)–(18) replaced by QMEDj = exp(yj ) and
̂QMEDj = exp(ŷj ). We have also displayed the scatter

plots of the LOOCV based predicted value ̂QMED against
the observed value QMED for different models in Fig. 6,
where the dashed lines stand for the predicted value equal
to the observed value. From this figure, the [33] model
appears not work well with most of the scattered points
under the dashed line, but which model is preferred to in
prediction cannot be clearly seen from the scatter plots.
Nevertheless, in Table 8, we can clearly see that the spatial
lag models perform worse than the other models inclduing
the model of [33] in prediction of the QMED in terms of
the MAPE. However, in terms of all the four error measures
of the MSE, RMSE, MAE and MAPE, the spatial error
flooding models, in particular the contiguity weight matrix

(a) Distribution for Errors of Prediction of ln(QMED)

(b) Distribution for Errors of Prediction of QMED

Fig. 7 Plots of quantile value (y-axis) of the absolute percentage error
(APE) for the LOOCV based prediction of: a Y = ln(QMED), and
b QMED, against the quantile level (x-axis) for the model of [33] and
the 4 models of sperrcon , splagcon , sperrdis and splagdis . For clarity,

the plots are made for the quantile level (x-axis) from 0 to 0.90 (left),
from 0.90 to 0.99 (middle) and from 0.99 to 1 (right) in panels a and
b, respectively
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based model, all beat the model of [33] significantly in
prediction of QMED itself as indicated in Table 8. These
results again well demonstrate that our spatial error flooding
models (particularly the sperrcon model) outperform the
model of [33], which are robust in the sense of different
error measures, in estimation of the UK index flood.

We finally provide a comment on the results, particularly
on the difference between predictions of Y = ln(QMED)

and QMED in terms of the MAPE. We hence further
examine the distributions, in terms of quantiles, of the
absolute percentage errors (APEs) for Y = ln(QMED) and
QMED with the different models considered above. Here
the quantile value of the APE at the quantile level α, denoted
by Qα , satisfies P(APE < Qα) = α. The plots of the
quantile value Qα of the APE against the quantile level α for
different models are displayed in panels (a) and (b) of Fig. 7
for Y = ln(QMED) and QMED, respectively, where for
clarity, the quantile levels from 0 to 0.90, from 0.90 to 0.99
and from 0.99 to 1 are partitioned and plotted on the left,
the middle and the right panels, respectively. It can be seen
in panel (a) of Fig. 7 that the curves of quantile values
for both the spatial error and the spatial lag models are
basically under that for the model of [33], in particular over
the quantile level from 0.99 to 1 (the right-hand panel) with
outlying (extremely large) APE values. This explains the
performance of the spatial lag models and the spatial error
models over the model of [33] in terms of MAPE in Table 7.
However, in panel (b) of Fig. 7, the curves of quantile values
for the spatial lag models are mostly slightly above that for
the model of [33], in particular significantly above for the
part of the quantile level from 0.90 and 0.99 (the middle
panel). This may also explain why the spatial lag models
are slightly worse than the model of [33] in terms of MAPE
in Table 8. We can also see in panel (b) that the quantile
curves for the spatial error models (sperrcon and sperrdis)
are basically under that for the model of [33], so that the
spatial error models outperform the [33] model in terms of
the MAPE as shown in Table 8. For the performance of the
models in terms of other error measures, the results from
Tables 7 and 8 can be explained similarly with the spatial
error models preferred to the [33] model for the UK index
flood estimation by examining the distributions of other
error measures, which are omitted to save space.

5 Conclusion

Flood estimation for ungauged catchments is a challenging
task. Urgent needs for efficient statistical method to identify
and extract the unknown and unexpected complex features
from the data sets are obvious, in order to have reliable
index flood estimation models. For this purpose, the index
flood regression model known as the QMED model in the

Flood Estimation Handbook (FEH), which is the basis of
most studies on flood risk estimation and modelling, has
been assessed by spatial additive analysis. It is found that
the FEH-QMED model (2) appears reliable in identifying
the nonlinear effects of the catchment descriptors. Based
on this, we have attempted to explore the unexpected
features in the UK flood peak data set that went overlooked.
We have found that the existing index flood estimation
models can be significantly improved by spatial flooding
models.

Our empirical findings through the work in the above are
summarized as follows:

1. The nonlinear impacts of the explanatory catchment
descriptors identified by the FEH-QMED model (2)
appear reliable for the UK flooding data through spatial
additive assessment.

2. To further improve the FEH-QMED model, we have
suggested taking into account the spatial neighboring
effects through spatial autoregressive analysis, since
the spatial autocorrelation in the residuals of the FEH-
QMED type model, as indicated in [35], is significantly
strong through Moran’s I and Lagrange multiplier tests.

3. The UK flooding data appear to be more suitably
modelled by the spatial error type model (11) than
by the spatial lag type model (12). Our diagnostic
assessment of spatial autoregressive analysis shows
that the residuals of the spatial error type models are
significantly uncorrelated with p values for contiguity-
and distance-based spatial weights being as large as
68.89% and 95.59%, respectively, while the residuals
of the spatial lag type models are detected to be
significantly correlated yet.

4. We have empirically found that the spatial error type
model (11) with contiguity-based spatial weight matrix
is a significantly improved new model for the UK index
flood estimation in terms of model selection by the AIC
value. Moreover, our leave-one-out cross validation
assessment shows that our new model outperforms the
updated FEH-QMED model based on a revised data-
transfer method of [33] in prediction. This conclusion is
robust in terms of different error measures, for example,
with a reduction of the mean squared prediction error
by a percentage of 13.8%.

The improved index flood estimation model for the UK
flooding data can be expressed, from Table 4, as

ln(QMEDi) = 2.1494 + 0.8497 ln(AREAi)

−3.2655(BFIHOSTi)
2

+2.9526 ln(FARLi)

−1.8181(1000SAAR−1
i ) + ei,

e = 0.4351We + ε, (19)

746 Marinah Muhammad, Zudi Lu



where e = (e1, e2, · · · , en)
′ and ε = (ε1, ε2, · · · , εn)

′ with
εi being i.i.d. of normal distribution, and W is a n × n

standardized contiguity-based spatial weight matrix based
on (6).

It is well known that the FEH-QMED model has become
the industry standard used to estimate local flood risk and
develop resilient infrastructure. Similarly, it is interesting
to investigate the applications of our improved index flood
estimation model (19), e.g., for flood defense planning,
flood risk analysis, new development planning and rarity
assessment of notable rainfalls or floods in the UK,
which are left for future research. In addition, potential
improvement based on this work may be further considered
as discussed in Section 3.2. For example, we may consider
model selection with other spatial weight matrices that
represent more neighboring sites than the contiguity- or
distance-based matrix representation of a short-distance or
quasi proximal action in this paper. We may also consider
non-Gaussian distribution in model building as shown in
Fig. 2. These are beyond the scope of this paper and worth
more efforts of investigation for future work.
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