
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

The Spatial Influence of Environmental and Anthropogenic Factors on
The Pattern of Air Pollution in Malaysia
To cite this article: Siti Hajar Ya’acob and Abdul Hamid Mar Iman 2020 IOP Conf. Ser.: Earth Environ. Sci. 549 012011

 

View the article online for updates and enhancements.

This content was downloaded from IP address 103.101.245.250 on 12/01/2021 at 04:05

https://doi.org/10.1088/1755-1315/549/1/012011


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

2nd International Conference on Tropical Resources and Sustainable Sciences

IOP Conf. Series: Earth and Environmental Science 549 (2020) 012011

IOP Publishing

doi:10.1088/1755-1315/549/1/012011

1

The Spatial Influence of Environmental and Anthropogenic 
Factors on The Pattern of Air Pollution in Malaysia 

Siti Hajar Ya’acob1* and Abdul Hamid Mar Iman2 

1 Faculty of Earth Science, Universiti Malaysia Kelantan, Malaysia 
2 Sustainable Environment and Conservation Cluster, Universiti Malaysia Kelantan, 
Malaysia 
 
E-mail: hajar.y@umk.edu.my 
 
Abstract. Air contaminant levels experience a large degree of spatial dimension. This study is 
an attempt to address the issue of spatially related human-made activities that cause 
distribution air pollutants over the geographic area. PM10 variable within 16-year annual 
observations (2000-2015) from 37 fixed monitoring stations across Peninsular Malaysia was 
analysed. Spatial analysis was performed using Exploratory Regression, Ordinary Least Square 
Regression, spatial autocorrelation, and kriging interpolation in ArcGIS software version 10.5. 
Generally, the variance inflation factor for all the exploratory variables was below 7.5, 
indicating the absence of multicollinearity among them. The adjusted R2 was in the range of 
0.3–0.4 for the selected sub-model. Only industrial land use and RH were significant predictors 
in the selected sub-model. The initial profiling of PM10 using geographic information system 
(GIS) was able to identify the relevant spatial relationship leading to the identification of 
monitoring stations area either belongs to a hotspot or cold spots. 

1. Introduction 
Air pollution has been a long-nagging phenomenon since the start of the industrial revolution [1,2], 
and it contributes to the deterioration of quality of human life, including pregnancy outcomes [3,4] and 
also affects other living organisms. It affects health and environment in particular related to the cardio-
respiratory endpoint, water pollution, and vegetation, respectively [5–8]. Foremost, air pollution kills 
approximately 5.5 million people annually worldwide [9]. It also has economic consequences [10]. 

Causes of air pollution are mostly anthropogenic mainly due to growing urbanization and 
industrialization, with most of them originating from various sources such as factories, power plants, 
dry cleaners, vehicles, and even wind-blown dust and wildfires [11,12]. Afroz et al   [13] reported that 
for the past five years, the three significant sources of air pollution in Malaysia are mobile (c.a. 70-
75% of total air pollution), stationary sources (c.a. 20-25%), and open burning sources (c.a. 3-5%). 

The primary sources of air pollution include emissions from vehicles and industrial activities that 
discharge greenhouse gases (GHG) into the environment [14]. Transboundary air pollution also has 
become a new phenomenon in the modern world [15–19]. According to [20], urbanization, industry, 
motor vehicles, and forest fires remain the main contributors to the deterioration of air quality in the 
Klang Valley. The most common air pollutants are carbon monoxide (CO), hydrocarbons (HCs), 
oxides of nitrogen (NOx) such as nitric oxide (NO) and nitrogen dioxide (NO2), ozone (O3), particulate 
matter such as PM10, sulfur dioxide (SO2), and ammonia (NH3) [20,21]. 
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Air pollution attracts attention from the relevant authorities around the globe leading to significant 
actions such as the 1979 Convention on Long-range Transboundary Air Pollution and its Protocols 
[22,23] and the Ten Research Priorities for Airborne Particulate Matter agenda [24,25]. Apart from 
that, research works on air pollution in Malaysia have included the level of air pollutant concentration 
at various locations and duration, source apportionment, trajectory pathways, modeling of particulate 
matter using satellite remote sensing and meteorological relationship [26]. Among others, the 
monitoring activities give the status of current air quality based on the Malaysia Air Pollution Index 
(MAPI) for only six air pollution parameters namely ozone (O3), carbon monoxide (CO), nitrogen 
dioxide (NO2), sulfur dioxide (SO2) and particulate matter (PM).  

Patterns of air pollution in Malaysia are yet to be more understood, especially because vulnerable 
populations are more likely to live closer to pollutant sources and, thus, closer to pollutant monitors 
[27]. Their spatiality and temporality are indicated in many past studies [28–32]. Awang et al. [33], for 
example, discovered that NO2, CO, PM10, and SO2 emitted from industrial and urban areas had 
demonstrated two peaks in the diurnal variations whereby the morning rush-hour peak was mainly due 
to vehicle emissions while the late evening peak was attributed mostly to meteorological conditions, 
particularly atmospheric stability and wind speed. 

This paper attempts to test the hypothesis that more industrialized areas and more populated cities 
tend to have a higher level of air pollution, specifically PM10 pollutants. If this is true, in the Malaysian 
case, the Peninsular Malaysia west coast’s air can be expected to be more polluted than that of the east 
coast. 

2. Theoretical background 
The Malaysian states can be divided into two groups in the number of active vehicle populations – one 
with vehicle population exceeding one million units (Figure 1, panel a) and the other less than one 
million units (Figure 1, panel b). In Peninsular Malaysia, air pollution can be expected to be higher on 
the west coast, especially in the Klang Valley (F.T. of Kuala Lumpur and Selangor), Johor, Pulau 
Pinang, and Perak, compared to the east coast. The trend in the number of industries reflecting the 
intensity of industrialization in the Malaysian states is summarized in Figure 2. Similarly, these states 
can be subdivided into three groups with Selangor, Johor, and Pulau Pinang top the list followed by 
Perak, Kedah, Negeri Sembilan, Sarawak, and Sabah in the second group while Pahang, Terengganu, 
Federal Territory of Kuala Lumpur, Kelantan, Perlis, and Federal Territory of Labuan in are in the 
third group. 

(a) 
(b) 

Figure 1. The trend in the number of vehicles in Malaysia, 2008-2015 (Source: Constructed from 
Department of Road Transport Malaysia, 2008-2015) 
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On the basis of industrialization, air pollution is expected to be higher on the west coast of 
Peninsular Malaysia, especially in the Klang Valley, Johor, and Pulau Pinang compared to the east 
coast. 

Based on the trend of vehicle population and industrialization discussed above, it can be predicted 
that air pollution tends to demonstrate spatial patterns. However, the spatial pattern of air pollution is 
of special interest since it indicates some important spatial relationships that can help us to understand 
people’s activities and environmental quality. It may also indicate people’s demographic 
characteristics. For example, exposure to benzene pollution was related to low-side demographic 
characteristics of the population [34]. 

(a) (b) 
Figure 2. The trend in the number of manufacturing industries in Malaysia, 2010-2017 (Source: 
Malaysian Industrial Development Authority (MIDA), 2010-2017) 

Profiling air pollution spatially will add to the understanding of air quality across a particular 
geographic locality so that monitoring activities can give the status of current air quality by geographic 
sub-region. In this context, potential accumulation of air pollutants can be analyzed for a specified 
duration of exposure, which represents the level of air pollution calculated spatially and temporally 
over several years. 

3. Methodology 

3.1 Study area 
Peninsular Malaysia is situated between Thailand and Indonesia. It has a total population of nearly 
32.6 million [35]. Up to the year 2019, Peninsular Malaysia has 37 Continuous Air Quality Monitoring 
(CAQM) stations situated at various locations and managed by the Department of Environment (DOE) 
Malaysia (Figure 3). This study used the recorded pollution data from all of these sites to represent air 
pollution exposure in Peninsular Malaysia. These stations are divided by DOE into industrial, urban, 
and suburban areas, whereas only one location – Jerantut – is considered as a background. These 
stations were regularly operated by Alam Sekitar Malaysia Sdn. Bhd (ASMA) until April 2017. All 
instruments at those stations were fully automated. All data gathered from these stations were 
analyzed using ArcGIS 10.5 software. 
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Figure 3. Locations of 37 CAQM stations across Peninsular Malaysia 

3.2 Data sources and mining  
The dataset on PM10 and three meteorological variables (wind speed, temperature, and humidity) 
covering a 16-year period from 2000 to 2015 were provided by the DOE. The data were originally 
provided in the hourly form but were then converted into yearly averages to simplify the annual trend 
analysis to meet the ArcGIS data mining procedure. We also included types of land-use (LU) area (for 
the year of 2015) and average daily traffic (ADT) (the year 2006 to 2015) to represent potential air 
pollutant sources. These two datasets were obtained from the Federal Department of Town and 
Country Planning (JPBD), Peninsular Malaysia, and constructed from the report of Transport Statistic 
Malaysia 2015 [36], respectively. Other predictor variables comprise climatic parameters, namely 
wind speed (WS), relative humidity (RH), and temperature also provided by the DOE. Altogether, a 
total of 407 data (37 observations points x 1 dependent variables x 11 independent variables) were 
prepared in Excel and spatially referenced using each location’s longitude and latitude. The 
coordinates were projected in the World Grid System of 1984 (WGS84) during the process of 
converting the spreadsheet data into the GIS workspace. 

 
Figure 4. The flow of data mining and processing 
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3.3 Modelling of spatial relationship 

3.3.1 Exploratory regression analysis 
The modeling schema is summarized in Figure 4, consisting of PM10 as the independent variable and 
the other eleven independent variables as the predictor variables. Exploratory regression analysis was 
employed for model selection as well as to identify the relative importance of predictor variables [37]. 
Hence, this study used the exploratory regression tool as an initial step in modeling the statistical 
relationship between these variables. This approach provided a powerful method to find for the 
properly specified Ordinary Least Squares (OLS) model [37]. Through exploratory regression, all 
potential combinations of eleven candidates’ predictor variables towards air pollution phenomena 
were assessed. This tool generated a summary report that comprised the maximum Variance Inflation 
Factor (VIF) value, the explanatory variables’ significance and sign, the Jarque-Bera p-value, the 
spatial autocorrelation p-value, the Akaike’s Information Criterion (AICc) and the adjusted R2 value.    

3.3.2 Ordinary least squares (OLS) regression 
The OLS was first used to explore the possible spatial relationship of PM10 concentrations against 
pollution sources and meteorological factors across Peninsular Malaysia (see Figure 4). Specifically, 
the OLS technique was employed to answer the question: was there any spatial relationship between 
the concentrations of PM10 (y) and its explanatory variables (x) using the following equation:       

3.4 Spatial pattern analysis 
Spatial autocorrelation was used to assess the spatial dependence of PM10 concentration residual 
values. In the previous study, we compared two types of spatial autocorrelation statistics, namely 
Getis-Ord general G and global Moran’s I [38]. That study aimed to test for the spatial clustering 
tendency of the particular air pollutants at 95% confidence level (p-value < 0.05) using the following 
equation: 

 

,                               (2) 

               (3) 

=                                              (4) 

Both spatial statistics generate z-score values that indicate either spatial dispersion or clustering of 
residual from PM10 regression.    
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4. Results 

4.1 Descriptive and trend analysis for mean PM10 concentration 
The results of the PM10 concentration profile at the 37 CAQM stations within 16 years of duration is 
shown in Table 1. Seven locations only started to operate recently than 16 years duration ranging from 
6 to 14 years back. The comparison of PM10 concentration among the 37 CAQM stations was made by 
dividing them into four spatial categories, namely suburban, urban, industry, and background (see 
Figure 5). The results of the mean PM10 concentration level were also compared with the annual 
average exposure limit value of 50 µg/m3, as outlined in the New Malaysia Ambient Air Quality 
Standard (MAAQS 2014). Four suburban locations have exceeded the above guideline value, namely 
Muar, Manjung, Kuala Selangor, Banting, and Seberang Jaya Perai. The urban areas have four (Kuala 
Terengganu, Cheras, Shah Alam, and Klang) while the industrial areas have seven (Pasir Gudang,  
Petaling Jaya, Tanah Merah, Perai, Balok Baru, Nilai, and Bukit Rambai) locations with yearly PM10 
concentration level above 50 µg/m3. In particular, Klang (urban area) and Bukit Rambai (industrial 
area) were two most polluted locations with the highest mean PM10 concentration level of 67.84±8.5 
µg/m3 and 65.88±10.6 µg/m3, respectively. This suggests that urban and industrial areas have shown to 
have a higher level of air pollution.  In our case here, Klang and Bukit Rambai were, respectively, 
about 1.36 times and 1.32 times more polluted than the national average or 1.83 times and 1.78 times 
more polluted than the background situation, i.e., Jerantut (PM10 concentration of 38 µg/m3). 

Table 1. Descriptive statistics of PM10 concentration 

Location Mean (µg/m3) Number of years (n) Min. Max. SD 
Klang 67.84 16 54.97 89.30 8.50 
Bukit Rambai 65.88 16 49.51 83.40 10.65 
Nilai 59.45 16 53.45 69.55 4.15 
Balok Baru  57.34 16 44.42 71.79 7.27 
S.Jaya Perai 57.32 16 47.85 75.70 7.91 
Banting 55.75 6 46.48 71.16 8.84 
Shah Alam 55.45 16 38.53 79.56 10.35 
Perai 54.50 16 37.64 91.76 17.47 
K. Selangor 54.05 16 40.23 76.61 10.80 
Cheras 53.01 12 43.70 68.79 6.75 
Tanah Merah 52.22 7 39.02 61.95 7.51 
Petaling Jaya 52.21 16 36.68 64.29 8.28 
Manjung 51.38 16 37.74 70.27 10.47 
Pasir Gudang 51.02 16 45.16 64.67 4.80 
Muar 50.83 16 42.16 62.62 4.76 
Kuala Terengganu 50.63 16 28.66 56.92 6.30 
Sungai Petani 49.82 16 37.78 71.15 8.52 
Port Dickson 48.44 8 39.75 59.65 5.74 
Pegoh Ipoh 48.35 16 36.66 56.85 6.49 
K.L 48.31 7 42.05 61.42 7.21 
Putrajaya 47.40 14 37.91 64.02 8.58 
Jln Tasek Ipoh 47.20 16 36.25 59.76 6.38 
Kota Tinggi 46.26 8 39.00 49.70 3.75 
Seremban 45.73 16 39.03 58.17 4.82 
Kemaman 45.25 16 32.73 61.51 8.62 
Taiping 44.93 16 34.09 54.51 6.01 
Bndr Melaka 44.21 16 36.13 58.25 7.57 
Larkin 43.15 16 32.62 60.23 7.94 
Kangar 42.57 16 34.74 60.20 7.07 
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Location Mean (µg/m3) Number of years (n) Min. Max. SD 
Kota Bharu 42.42 16 36.24 67.19 7.26 
Tg. Malim 39.25 16 33.78 46.71 4.35 
Pulau Pinang 38.45 16 28.02 59.12 7.85 
Jerantut 38.08 16 30.81 50.01 5.96 
Kerteh 37.58 16 31.50 53.14 5.42 
Alor Setar 35.92 16 28.51 54.10 6.04 
Langkawi 35.42 16 28.30 47.76 6.27 
Ind Mahkota  35.00 16 24.77 44.27 5.06 

 
Figure 5. Comparison of average PM10 concentration at 37 CAQM stations 

A similar pattern of air pollution (monthly mean PM10 concentration level) is depicted in Figure 6 on 
the basis of monsoonal seasons. The South-West monsoon, which usually occurs in June-September, 
shows a consistently higher monthly mean PM10 concentration across Peninsular Malaysia, ranging 
from 37.41 to76.89 µg/m3. The North-East (November-March) and Inter monsoon (April, May, and 
October) recorded the mean PM10 concentration range of 31.25-63.34 and 33.74-63 µg/m3, 
respectively. 
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Figure 6. The trend of mean PM10 concentration level during different monsoon 

Another data-set comprised land-use groups for the year of 2015. The land-use groups were used as a 
proxy for urbanization level, namely industry, infrastructure, institutional, commercial, transportation, 
housing, and mixed developments. They were measured in terms of the built-up area (ha.).  The 
descriptive statistics for the land-use groups ‘built-up areas (ha.) are shown in Figure 7.  

The mean value for the built-up area was 7,923.8ha. Not surprisingly, Kuala Lumpur was the 
highest built-up area, followed by Ipoh (both Pegoh and Jln.Tasek). These locations were categorized 
as urban and industrial areas based on the DOE groupings for CAQM stations. Five industry locations 
have a built-up area of more than 5,000 ha. which also recorded high PM10 concentration (above the 
recommended limit), namely Pasir Gudang, Balok Baru, Nilai, Perai, Petaling Jaya, and Bukit Rambai. 
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Figure 7.  Built-up area (ha) 

Apart from the land-use area as the potential sources for PM10 emission, we have also included 
Average Daily Traffic (ADT) to reflect traffic-related air pollutants.  We analyzed the ADT data from 
2006 to 2015 (see Figure 8). The results were divided into Figure (a) for ADT count less than 10,000, 
(b) for range ADT 10,000-25,000, (c) for range ADT 20,000-50,000 and (d) ADT above 50,000.  It 
can be seen that Nilai recorded the highest ADT count with a value of 221,066.    
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(c)  

(d) 

Figure 8. Trend Average Daily Traffic in 2006-2015 

4.2 Determination of predictor importance 
The selection of reliable predictors is crucial before the execution of any regression model. Scatterplot 
results indicate the relationship between two variables. Small adj R2 values between two variables 
show a low correlation between them (Figures 9 and 10). Moreover, all VIF value was more modest 
than 7.5 by which indicates that there was no redundancy among the explanatory variables. In other 
words, no multi-collinearity issues exist in the data-set as a whole. 

 
Figure 9. Scatterplot of PM10 and climatic parameters 
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Figure 10. Scatterplot of PM10 and six types of land-use area 

4.3 Spatial model selection 
Exploratory regression in ArcGIS initially generated 15 sub-model outputs. However, there were 
only 11 sub-models chosen in this paper, which have the value of adjusted R2 higher than 0.30, 
except for the first sub-model, as shown in Table 1. Overall, the degree of explanatory of air 
pollution using the selected predictor variables was rather low. Despite that, two IVs consistently 
appeared as significant variables, namely RH and Industry area. The last sub-model was chosen 
for further analysis based on the combination of the highest possible value of adj R2 with the 
lowest possible AICc value (0.34 and 254.43, respectively). 

Table 1. Comparison of the 11 sub-models 

 
* = p-value < 0.10, ** = p-value < 0.05, *** = p-value < 0.01 

4.4 Modeling spatial relationship 
Ordinary least square (OLS) regression was performed to estimate the level of PM10 concentration. 
Generally, the output from the exploratory regression analysis was used to find the most potential 
suitable predictor variables. We then proceeded with a final prediction model that used only four types 
of land-use (Industry, Housing, Institutional, and Infrastructure) as the proxy for urbanization level. 
Also, based on results from the exploratory regression, only RH was included in the regression model 
as the meteorological influence factor. Table 2 shows the regression coefficients of the final model. 
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The adj. R2 was 0.34, indicating that the selected IVs were able to explain approximately 34% of the 
PM10 variation. Regression coefficient of RH showed a negative relationship (-0.64) with PM10, p-
value <0.05. Only industry and institutional have a positive association with the variation of PM10 
level; however, the coefficient values for both were less than 0.01.   

Subsequently, the OLS regression output for PM10 was mapped using kriging interpolation, as 
shown in Figure 11. Generally, four areas showed a predicted concentration level of PM10 above 50 
µg/m3. Most of the locations on the East coast have prediction PM10 levels below 50 µg/m3 except for 
Balok Baru and Kemaman. As expected, Selangor has the most significant area that predicted to have 
levels of PM10 higher than the limit, followed by Ipoh-Manjung and Perai-Seberang Jaya Perai.  

The spatial pattern was also conducted using Getis-Ord General G and Morans I. We found that z-
score value was 1.3405 and 0.2924 for Getis-Ord General G and Morans I, respectively. Both spatial 
autocorrelations for the OLS regression residuals resulted in an insignificant p-value (Getis-Ord 
General G = 0.1800 and Moran’s I = 0.7699).   

Table 2. OLS regression coefficient of PM10 
Explanatory variables b  SEs p-value 
Constant 94.8630 22.2681 0.0001** 
RH -0.6422 0.2795 0.0285* 
Industry 0.0074 0.0022 0.0024** 
Infrastructure -0.0043 0.0042 0.3213 
Institutional 0.0040 0.0023 0.0914 
Housing -0.0014 0.0008 0.0860 
    
F 4.7011   
Prob >F (5,31) 0.0026*   
Adjusted R2 0.3395   

*p-value < 0.05, **p-value < 0.01 

 
Figure 11. Kriging mapping for OLS PM10 prediction 
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5. Discussion 
The 16-year average PM10 concentration observed based on the DOE data at 37 air quality monitoring 
stations, performed using GIS application, was analyzed spatially by taking into consideration the 
potential pollution sources, namely land-use, average daily traffic, and climatic conditions. The spatial 
relationship between PM10 and the pollution sources was analyzed in this study using exploratory 
regression, OLS regression, and kriging interpolations.  

In general, a higher level of mean PM10 concentration was associated with a larger built-up area of 
land use. Figures 5 and 7 show that 15 CAQM stations situated on the built-up area of more than 4,000 
ha have exceeded the exposure limit of RMAQG. The stations were Muar, Sungai Petani, Seberang 
Jaya Perai, Kuala Selangor, Manjung, Banting Klang, Shah Alam, Kuala Terengganu, Cheras, Pasir 
Gudang, Balok Baru, Nilai, Perai, PJ, Bukit Rambai and Tanah Merah. However, the mean PM10 
concentration at the other seven stations located in Indera Mahkota, Kota Bharu, Pegoh, Kuala 
Lumpur, Seremban, Jalan Tasek, and Larkin with a built-up area of more than 10,000 ha, did not 
exceed the RMAQG. This suggests that other predictor variables could be counted instead of using the 
total size of built-up areas such as specific types of land-use areas in a particular industry area and 
volume of traffic. Both later predictor variables are discussed in the subsequent paragraphs. 

Our results also revealed that Petaling Jaya and Tanah Merah have small built-up areas, but their 
mean concentration levels of PM10 were higher than the recommended guideline. This could be 
because both locations were situated in the industrial sectors, which have a variety of industrial 
processes potentially emitting particles [11]. On top of that, the mean concentration of PM10 recorded 
at the CAQM stations within the Klang Valley (including Klang, Shah Alam, KL, and Cheras) was 
also relatively high. Air pollution researcher in Malaysia usually regards the Klang Valley as a 
continuous hot spot location throughout Peninsular Malaysia [39–41]. The Klang Valley is considered 
to be a highly polluted area due to a mixture of local air pollutant emission originated from rapid 
development, a massive volume of traffic, increasing urban migration population added with trans-
boundary pollution, in particular, recurrent haze episodes [41–43].  

Moreover, a previous study has revealed that the regional and transboundary haze in 2015, El Niño, 
significantly affected the southern and western parts of Peninsular Malaysia [44]. We also found that 
the insignificant predicted higher PM10 concentration level using the OLS regression model also 
occurred mainly in the western part of Peninsular Malaysia (Figure 11). This finding was supported by 
the result of spatial autocorrelation for the regression residuals that was by which means the residual 
exhibit random spatial pattern. Hence, this study was able to produce a correctly specified model. 
Another potential pollution source for PM10 that was included in this study was the average daily 
traffic (ADT). As can be seen in Figure 8, ADT counts that were higher than 50,000 were also 
associated with a higher PM10 concentration level. This suggests that ADT was a possible predictor 
variable air pollution. 

The average PM10 concentration was also substantially influenced by climatic conditions [45]. Our 
finding has also shown that a consistent trend of high concentration levels of PM10 was recorded 
during the southwest (SW) monsoon for all stations (Figure 6). The finding was supported by a 
previous study which stated that most days during the SW monsoon have readings exceeded the value 
of 50µg/m3 [46]. In Figure 6, Klang and Bukit Rambai have shown the highest readings consecutively 
during SW, NE, and inter (INT) monsoons. The results suggested that despite the different monsoonal 
seasons, the locational aspect remained as the essential PM10-variation factor. Moreover, the monsoon 
seasons play an additional important role in intensifying the concentration levels of PM10, notably 
during the dry SW monsoon [47]. This was due to the smoke from biomass burning from regional 
sources during that season [46]. 

We also determined the importance of each of the specific predictors that comprised six individual 
types of land-use area and climatic parameters. They were RH, WS and temperature and Industry, 
Infrastructure, Institutional, Commercial, Transportation, Housing, Mixed Development, as shown in 
Figures 9 and 10, respectively. The importance of each potential predictor variable helped to resolve 
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multicollinearity issues that were potentially experienced in the model development. All of the VIF 
values were lower than 7.5, indicating the absence of redundancy among the explanatory variables.  

To find the key variables using the scatterplot matrix, the selection of the best model also was 
being performed using the exploratory regression tool in ArcGIS.  Identifying a correctly specified 
OLS model is usually an iterative process; therefore, execution of the exploratory regression analysis 
beforehand has shortened the model building process. The output from the analysis showed that RH 
and Ind were the only consistent and significant variables. Both the predictor variables also have the 
expected sign of coefficients. Our findings revealed that RH has a meaningful negative relationship 
with the PM10 concentration level, similar to a previous study [45]. Particles tend to grow densely in 
high humidity settings that lead to dry deposition occurrence resulted in decreasing particle 
concentration in the air [48]. 

Table 1 also shows one of the candidate variables, namely the total built-up area, which has the 
lowest adjusted R2 as compared to other variables. Specific types of land-use promote better 
explanation towards air pollution phenomena because of every kind of land-use associate differently 
with air pollutants emission. For example, industry land-use accounted for significant air pollutants 
emission since during processing and manufacturing process because it requires fuel burning to 
generate energy. By contrast, housing land-use has a lesser effect on air pollution. The use of coal-
burning for home cooking is insignificant in our country, unlike in other countries such as China. 
China reported that most of its residents depend on coal-burning for cooking and energy production, 
especially during winter [49].                

OLS is a global model that employs assumptions like consistent and static relationships across the 
whole study area [50]. Several diagnostic tests can increase the reliability of an OLS model. They 
include checking for the coefficients with the correct expected sign, statistically significant 
explanatory variables, customarily distributed residuals, and the absence of spatial autocorrelation of 
residuals, no redundancy among explanatory variables, and strong adjusted R2. Table 2 shows an 
adjusted R2 value of 0.34, indicating a low model’s interpretative ability in the variation of PM10 
concentration. Spatial autocorrelation of the regression residuals generated statistically insignificant z-
score resulting in a random spatial pattern. It has indicated that we have a correctly specified model. 
An adequately defined model is needed to ensure the prediction of air pollution phenomena becomes 
highly trusted and less biased. 

6. Conclusion 
There was evidence about the geographic location as a significant attribute affecting air pollution 
originated from different levels of urbanization as well as types of human-made activities. Compared 
to the west coast, the east coast was a cleaner sub-region to live in. The overall finding of this study 
was confirmatory to some past studies that air pollution could be profiled on the basis of location and 
economic activities. Locations with a higher level of industrialization and urbanization can expect to 
be related to a higher level of air pollution compared to other areas. We found increasing levels of 
PM10 concentration was proportionate to the increased size of the built-up area; however, specific 
types of the land-use area was a better predictor than the total built-up area. Moreover, the industry 
area has appeared with a significant and positive association with the PM10 concentration level. 
Besides, being contributed from the industrial regions, PM10 variation has also fluctuated following 
RH. In this study, the locational influence remained as a prominent contributor to PM10 distribution 
despite different monsoonal seasons.  Notwithstanding this, the highest concentration level occurred 
during the SW monsoon for all locations. There was also evidence of clustering PM10 concentration 
levels in this study using the regression model.  Our finding revealed that the global model was able to 
predict a 34% variation of PM10 level spatially. The prediction by kriging interpolation in the 
geographic information system (GIS)  software has identified the monitoring areas belonging to 
hotspots or cold spots. Therefore, the hot spots and cold spots identification should be taken into 
consideration by the authority and decision-makers in formulating measures to mitigate air pollution 
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issues, minimizing the loss of air pollution data quality as well as on guard the public health concern 
without significant financial burden.      
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