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Abstract: Callogenesis and embryogenesis are integral parts of many tissue culture procedures for 

genetic manipulation in rice. However, the efficiency of both processes is largely dependent on the 

media constituent especially the plant growth regulators (PGRs) due to the genotype-dependent 

nature of in vitro culture protocols. Therefore, this study investigates the effect of two PGRs; 

2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin (Kin) on callus growth and somatic 

embryogenesis of an important Malaysian rice cultivar (Oryza sativa L. cv. MARDI Siraj 297). 

Mature rice seeds explants were inoculated in Murashige & Skoog (MS) medium supplemented with 

different combinations of 2,4-D (0 to 3.5 mg/L) and Kin (0 to 0.5 mg/L) to induce callogenesis. 

Parameters for callus growth such as fresh weight (FW), callus induction frequency (CIF), 

embryogenic callus frequency (ECF), regeneration frequency (RF), number of plantlets per callus 

(PPC), callus texture and callus color were observed after 35 days of inoculation. The results show that 

the maximum callus growth was achieved in MS medium supplemented with combination of 2.0 mg/L 

2,4-D and 0.2 mg/L Kin, represented by the highest FW (211 mg), CIF (95%), ECF (90%), RF 
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(100%) and PPC (22 plantlets); along with friable callus texture. Low concentration of 2,4-D (0 

to 0.5 mg/L) in the presence or absence of Kin promotes root growth instead of callus, while high 

concentrations (above 3.0 mg/L) retard the callus formation. The embryogenic calli from this 

optimized PGRs combination were successfully formed shoots in MS medium supplemented with 2 

mg/L BAP and 1 mg/L NAA, followed by rooting in PGRs-free MS medium. This finding provides 

an efficient protocol for callogenesis and somatic embryogenesis of MARDI Siraj 297, since this is 

the first published report regarding somatic embryogenesis induction of this cultivar.  

Keywords: embryogenic callus; plant growth regulators; in vitro; regeneration; optimization; tissue 

culture 

 

1. Introduction 

Rice (Oryza sativa L.) is consumed as a staple food in Malaysia and it has become a central 

part of the nation’s economy and culture. According to the current analysis, Malaysians consume 

about 200,000 metric tonnes of rice a month which is equivalent to approximately 2.5 million metric 

tonnes a year [1,2]. Despite high dependence of the population on rice consumption, yearly 

decreasing trend of rice production in Malaysia has been observed from 2018 to 2021 [3]. This 

insufficiency necessitates 33% of outsourced supply from other countries such as Thailand, Vietnam 

and Pakistan to supplement the 67% of local rice produce [4]. 

Rice breeding programs in Malaysia had been initiated since 1964 with 52 cultivars released 

until year 2021 by the Malaysian Agriculture Research and Development Institute (MARDI) in order 

to increase the nation’s rice production capacity [5]. This figure is far behind other Asia’s rice 

producers such as India, Philippines and Thailand which had established about 1900, 200 and 80 

varieties respectively, over the same period [4]. Nevertheless, continuous efforts have been carried 

out by local research institutions to develop high yielding varieties with resilience to biotic and 

abiotic stress [6], especially through biotechnological intervention that speeds up the crop 

improvement programs. However, many of these genetic manipulations employ tissue culture 

technique that requires undifferentiated cells or embryogenic callus as an intermediary phase at 

which the manipulations will be applied [7,8]. Therefore, vigorously growing cell mass which is 

able to regenerate is needed as starting material for this manipulation purpose. 

For this purpose, optimization of callogenesis and somatic embryogenesis has been routinely 

conducted to customize the need of every single species or variety [9,10]. To date, growth medium 

optimization for plant tissue culture remains as an intricate part of in vitro plant establishment due to 

various endogenous and exogenous interactions [11]. Among these influencing factors, nutrient 

medium composition is the most important and easily manipulated [12]. Although Murashige & 

Skoog (1962) [13] (MS) basal medium has been widely used in many plant tissue culture 

development protocols, it often requires optimization of other constituents such as plant growth 

regulators (PGRs) especially if a particular response is desired [14,15]. 

Callus formation or callogenesis is possible under in vitro condition when plant tissues were 

exposed to auxin and cytokinin, whereby the ratio between these plant hormones determines the 

extent of differentiation and dedifferentiation [16–18]. These two classes of PGRs also imposed 

synergistic or antagonistic effects during somatic embryogenesis induction depending on plant 
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species [19]. Numerous findings had demonstrated the effects of auxins and cytokinins on callus 

growth of various plants including rice [20–23]. 

Meanwhile, somatic embryogenesis is cellular processes that involves morphogenetic changes 

in which somatic cell acquire ability to produce plants without fusion of gametes [24]. Its generation 

in plants happens when somatic cells acquire ability to regenerate bipolar structures during cell 

differentiation [19]. During in vitro culture, the embryogenic potential is achieved through 

manipulation of different elements including explant sources, medium composition, genotype of the 

mother plant and incubation condition [25–28]. In general, 2,4-dichlorophenoxyacetic acid (2,4-D) 

had been widely used for embryogenic callus induction [18]. The auxins mainly 2,4-D was known 

for its function in somatic embryogenesis induction and initial embryo proliferation [29–31]. 

Although its exact role in acquiring cells’ embryogenic competency is still unclear [29], 2,4-D was 

proved to influence the metabolism of endogenous IAA in carrot cells, which was proposed to have 

significant roles during formation of somatic embryo [32]. 

There were studies reported the sole use of 2,4-D as hormone for somatic embryo induction. For 

example, a study conducted on four Malaysian rice cultivars namely MR220-CL2, MR232, MR220 

and Bario found out that 3 mg/L 2,4-D resulted in the highest percentage of embryogenic callus 

formation [33], while another studies on cultivar MR219 showed the optimum somatic embryogenesis 

was achieved in medium with 2 mg/L 2,4-D [34]. Meanwhile, many others reported positive effect of 

combining 2,4-D and auxins such as kinetin or BAP in callogenesis medium [35–39]. Kinetin which is 

known to promote cell division [40] was also found to be the sole source of PGR in somatic 

embryogenesis of certain plant such as Corydalis yanhusuo [41]. 

Since the plant cells response are genotype-specific, optimization of PGR requirement of each 

species and varieties are important to ensure satisfactory callus growth and somatic embryogenesis 

that enables the subsequent plant regeneration [42–45]. Besides, due to the fact that this cultivar 

belongs to subspecies indica, a robust and widely used protocol has not been established because of 

its genotype-dependent nature [46]. Hence in this study, medium optimization was aimed at 

obtaining a suitable PGR combination for efficient callogenesis and somatic embryogenesis of 

MARDI Siraj 297 since there was no reports available on the optimized medium for this cultivar to 

date. At present, majority of rice farmers in Malaysia are using MARDI Siraj 297 (47.9%) for 

cultivation [47] to replace the former MR 219 variety that was reported to show reduced resistance 

towards blast disease [48]. The establishment of callogenesis and embryogenic callus induction 

medium provides an efficient protocol for vigorous growth of MARDI Siraj 297 rice callus with high 

regenerability for further crop improvement via in vitro manipulation. 

2. Materials and methods 

2.1. Plant material 

The mature seeds of Oryza sativa L. cv. MARDI Siraj 297 (Accession No. MRGB13019) were 

obtained from the Genebank & Seed Centre of Malaysian Agricultural Research and Development 

Institute (MARDI) at Seberang Perai, Malaysia. This study was conducted at the Cell Biology 

Laboratory, Faculty of Science, Universiti Putra Malaysia between February to May 2019. 
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2.2. Seed sterilization 

Intact rice seeds were hulled and washed under running tap water for 3 minutes. The seeds were 

then completely immersed in 70% (v/v) ethanol for 3 minutes, followed by 5% (v/v) sodium 

hypochlorite and Tween-20 (10:1) for 20 minutes [34]. Finally, the seeds were rinsed 5 times with 

sterile distilled water and blotted dry on autoclaved paper towels. 

2.3. Callus induction and regeneration 

Sterilized seeds were used as explant and inoculated on Murashige and Skoog’s Gamborg 

Modified Basal Media (Sigma-Aldrich®, USA) supplemented with different combinations of 2,4- 

dichlorophenoxyacetic acid (PhytoTech, USA) ranging from 0 to 3.5 mg/L and Kinetin 

(Sigma-Aldrich®, USA) from 0 to 0.5 mg/L. The media was added with 30% (w/v) sucrose 

(Chemiz®, Malaysia) and 0.3% (w/v) Gelrite® (Sigma-Aldrich®, USA) at pH 5.8. The culture flasks 

were kept under dark condition in controlled growth room at 25 ± 1 ℃ at relative humidity of 50 

to 60% [49]. The experiment was arranged in completely randomized design (CRD) with 5 

replicates for each treatment. The morphology and growth of the explants were observed after 35 

days of inoculation based on the following parameters: 

i. Callus induction frequency, CIF [50] 

CIF (%) = 
Number of calli

Total number of inoculated seed
×100       (1) 

ii. Embryogenic callus frequency, ECF [50] 

ECF (%) = 
Number of embryogenic calli

Total number of calli
×100        (2) 

Embryogenic calli obtained from different PGR treatments were transferred shoot induction 

which consists of MS salts supplemented with 2 mg/L BAP, 1 mg/L NAA, 100 mg/L myo-inositol, 

3% (w/v) sucrose and 0.4% (w/v) Gelrite® at pH 5.8 [22]. The cultures were maintained in a 

controlled growth room at 25 ± 1 ℃ with 16 hours photoperiod using fluorescent lamps. The 

shoot-producing calli were then transferred into MS medium without plant growth regulator for 2 

weeks for root induction. Callus regeneration frequency (Eq 3) and number of plantlet per callus of 

each treatment were recorded. 

ⅲ. Regeneration frequency, RF [22] 

RF (%) = 
Number of calli with shoots and roots

Total number of calli inoculated in regeneration medium
×100     (3) 

ⅳ. Callus fresh weight, FW 

The shriveled endosperms were removed and fresh weight of each callus clumps were measured [51] 

using an analytical balance. 

ⅴ. Calli texture was classified into 2 subgroups (friable or compact) based on their 

macroscopic characteristics according to [17]. 

ⅵ. Calli were observed for identification of somatic embryogenesis using stereo microscope 

with 45 times magnification. Embryogenic calli were recognized by their distinctive somatic embryo 
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development that involves the formation of proembryo, globular, scutellar and coleoptilar [18,52]. 

2.4. Statistical analysis 

The data were analyzed using one-way ANOVA using SAS software for Windows version 9.4, 

followed by Duncan’s Multiple Range Test (DMRT) at p < 0.05 for mean comparison. 

3. Results 

3.1. The effect of 2,4-D and kinetin concentrations on callogenesis and regeneration 

In this study, the maximum CIF (p < 0.05) were achieved at all kinetin levels: 0 mg/L Kin (T3), 

0.2 mg/L (T10, T11, T12) and 0.5 mg/L (T19) as presented in Table 1. All of the PGR treatments 

were able to induce callus, except for the treatments with the lowest concentration of 2,4-D 

between 0.5 to 1.0 mg/L (T1, T2, T8, T15, T16). The maximum CIF was attained in treatment with 

2,4-D ranging between 1.5 to 2.5 mg/L, while concentrations lower or higher than this range reduced 

the frequency of callus induction. 

Despite the ability to induce callus, not all callus produced in the treatments were embryogenic 

(Figure 1). For instance, in treatments without kinetin (T1 to T7), concentration of 1.5 to 3.5 mg/L 2,4-D 

produced callus, but only callus in 2.5 mg/L was embryogenic. Similarly in treatments with 0.2 mg/L 

and 0.5 mg/L kinetin, the embryogenic calli were only formed in combination of 2,4-D concentrations 

between 1.5 to 2.5 mg/L and 1.5 to 3.5 mg/L, respectively. Meanwhile, the highest (p < 0.05) ECF 

of 95% was observed in combination of 2.0 mg/L 2,4-D and 0.2 mg/L kinetin (T11). The ECF 

increased with the increment of 2,4-D concentration, but significantly declined at concentration 

above 3.0 mg/L (Table 1). 

 

Figure 1. Non-embryogenic (A) and embryogenic (B) calli of MARDI Siraj 297. The 

non-embryogenic calli mostly develop root-like structure with no appearance of globular 

embryogenic stages as observed in the embryogenic calli. 
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Table 1. The effect of different 2,4-D and Kin concentrations on callus growth of MARDI Siraj 297. 

TRT PGR 

combination 

(mg/L) 

CIF (%) ECF (%) RF (%) PPC FW (mg) Callus 

texture 

Callus 

color 

2,4-D Kin        

T1 0.5 0 - - - - - - - 

T2 1 0 - - - - - -  - 

T3 1.5 0 90.0 ± 6.1a 0 ± 0f 0 ± 0d 0 ± 0h 42.8 ± 4.1h F LY 

T4 2 0 85.0 ± 6.1ab 0 ± 0f 0 ± 0d 0 ± 0h 61.7 ± 3.3g F LY 

T5 2.5 0 65.0 ± 10.1bc 20.0 ± 5.0e 100.0 ± 0a 9.4 ± 0.5d 85.2 ± 3.7f F LY 

T6 3 0 85.0 ± 6.1ab 0 ± 0f 0 ± 0d 0 ± 0h 60.4 ± 2.1g F LB 

T7 3.5 0 45.0 ± 9.4d 0 ± 0f 0 ± 0d 0 ± 0h 3.9 ± 1.6i F B 

T8 0.5 0.2 - - - - - - - 

T9 1 0.2 80.0 ± 9.4ab 0 ± 0f 0 ± 0d 0 ± 0h 109.4 ± 6.5e F CR 

T10 1.5 0.2 90.0 ± 6.1a 60.0 ± 6.1c 93.3 ± 6.7ab 15.8 ± 1.2b 146.4 ± 5.4d F CR 

T11 2 0.2 95.0 ± 5.0a 90.0 ± 6.1a 100.0 ± 0a 22.0 ± 0.9a 221.9 ± 8.6a F CR 

T12 2.5 0.2 90.0 ± 6.1a 55.0 ± 5.0c 53.3 ± 3.3c 10.6 ± 0.7c 176.2 ± 5.9c F CR 

T13 3 0.2 85.0 ± 6.1ab 0 ± 0f 0 ± 0d 0 ± 0h 91.0 ± 5.1f F CR 

T14 3.5 0.2 80.0 ± 12.3ab 0 ± 0f 0 ± 0d 0 ± 0h 40.4 ± 5.6h F B 

T15 0.5 0.5 - - - - - - - 

T16 1 0.5 - - - - - - - 

T17 1.5 0.5 65.0 ± 6.1bc 60.0 ± 6.1c 56.6 ± 4.1c 6.8 ± 0.4e 138.7 ± 4.1d C CR 

T18 2 0.5 80.0 ± 5.0ab 60.0 ± 6.1c 86.6 ± 8.2b 7.4 ± 0.4e 202.4 ± 4.5b C CR 

T19 2.5 0.5 90.0 ± 6.1a 50.0 ± 0.0c 50.0 ± 0c 5.4 ± 0.4f 116.1 ± 5.5e C CR 

T20 3 0.5 80.0 ± 5.0ab 75.0 ± 0.0b 53.3 ± 8.2c 3.0 ± 0.3g 107.3 ± 7.4e C CR 

T21 3.5 0.5 55.0 ± 5.0cd 40.0 ± 6.1d 0 ± 0d 0 ± 0h 64.7 ± 6.9g F T 

Note: Values represent the mean ± standard error. Means within a column denoted by different letters are significantly 

different at p < 0.05 using DMRT. The FW = fresh weight; CIF = callus induction frequency; ECF = embryogenic callus 

frequency; RF = regeneration frequency; PPC = number of plantlets per callus; F = friable; C = compact; LY = light 

yellow; LB = light brown; B = brown; CR = cream; T = translucent. Symbol - indicates no callus was formed. 

Among the treatments, T5 (2.5 mg/L 2,4-D) and T11 (2.0 mg/L 2,4-D and 0.2 mg/L Kin) were 

found to be the most responsive for regeneration, by showing the significantly highest (p < 0.05) RF 

of 100% (Table 1). It was observed that plant regeneration occurred in certain range of 2,4-D 

concentrations, which was 2.5 mg/L (in treatment without kinetin), 1.5 to 2.5 mg/L (in treatment 

with 0.2 mg/L Kin) and 1.5 to 3.0 mg/L (in treatment with 0.5 mg/L Kin). Treatments with very low 

or high 2,4-D concentration reduced the capacity for regeneration. Meanwhile, the highest PPC (22 

plantlets) was also observed in T11 (Table 1). Although the calli in T5 showed the similar 

regeneration frequency as T11, the number of plantlets produced per callus was lower. In general, 

calli supplemented with lower kinetin (0.2 mg/L) produced more plantlets than those with higher 

kinetin concentration (0.5 mg/L). 

The stages of calli regeneration are shown in Figure 2. The cream colored calli formed green 

pigments upon 7 days of exposure to light (Figure 2A). After 3 weeks, coleoptilar structures 
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developed into greenish shoot buds (Figure 2B). Shoots were then proliferate and elongate in shoot 

regeneration medium (Figure 2C) and finally produced roots in rooting medium (Figure 2D). 

 

Figure 2. Regeneration of MARDI Siraj 297 embryogenic calli obtained from the 

optimized callus induction medium (MS + 2.0 mg/L 2,4-D and 0.2 mg/L Kin). (A) Green 

pigment appeared on cream colored calli (B) Shoot buds grow from scutellum-like 

structure (C) Shoots proliferate (D) Complete plantlet at 7 weeks old after transferred to 

regeneration medium. 

The highest (p < 0.05) FW was observed in MS medium supplemented with 2.0 mg/L 2,4-D 

and 0.2 mg/L kinetin (T11). Meanwhile, the calli produced in treatments containing both 2,4-D and 

kinetin (T8 to T21) had significantly higher FW compared to the treatments without kinetin (T1 to T7). 

Irrespective of the kinetin concentrations, seed explants inoculated in very low 2,4-D concentration 

(0.5 mg/L) did not form any callus. The FW increased with the increasing 2,4-D concentration but 

declined after reaching concentration of 2.5 mg/L (in medium without kinetin) and 2.0 mg/L (in 

medium with kinetin).  

The calli texture produced was friable except for those treated in 0.5 mg/L Kin (T17, T18, T19 

and T20). There was no tissue browning observed except for calli treated in the highest 2,4-D 

concentration (T17 and T14), whereas calli in other concentrations were either cream or light yellow 

in color. 

Considering all the parameters assessed for calls growth, the optimum responses were achieved 

in MS medium supplemented with 2.0 mg/L 2,4-D and 0.2 mg/L Kin (T11), represented by the 

highest CIF (95%), ECF (90%), RF (100%), PPC (22 plantlets) and FW (211 mg), with friable callus 

texture and cream colored callus.  

3.2. The effect of 2,4-D and kinetin concentrations on callus morphology and somatic embryogenesis 

of MARDI Siraj 297 

MARDI Siraj 297 seeds cultured on different combinations of 2,4-D and Kin treatments 

exhibited different morphological responses after 35 days of culture as shown in Figure 3. The callus 

formation started with the coleoptile emergence 2 days after inoculation on the respective growth 
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media. This was followed by swelling of scutellum tissue and formation of undifferentiated cell mass 

in the scutellum region on day 7 to 9. The calli were noticeable by day 13 in treatments that produced 

callus. While most treatments gave rise to callus without organ regeneration, certain treatments such 

as T1, T2, T8, T15 and T16 showed different response, whereby partial organ regeneration was 

produced in the form of rhizogenic callus. Calli formed in 0 mg/L Kin (T3 to T7) and 0.2 mg/L 

Kin (T9 to T14) were friable and light yellow or cream in color, except for calli in the highest 2,4-D 

concentration (T7 and T14) with brown colored calli. Meanwhile, calli derived in 0.5 mg/L Kin (T17 

to T21) were compact and cream in color, except for T21 that were friable and translucent. 

 

Figure 3. Morphogenic response of rice calli at 35 days on MS medium supplemented 

with different concentrations of 2,4-D and Kin (Grid = 1 cm × 1 cm). 

The distinctive developmental stages of somatic embryo in monocots which involves the 

formation of proembryo, globular, scutellar and coleoptilar stages were observed in treatments that 

produced embryogenic calli (T5, T10, T11, T12, T17, T18, T19, T20 and T21). The stages of somatic 

embryogenesis in MARDI Siraj 297 rice callus are shown in Figure 4. The somatic embryogenesis 

begins with the formation of callus at scutellum region (Figure 4A), followed by development of 

proembryogenic cells cluster in the periphery of calli after 20 days of culture (Figure 4B). The size of 

cells in proembryogenic region increased afterwards, indicating distinct differentiation of 

embryogenesis stages. Subsequently, the globular structure was observed on day 23 to 24 (Figure 4C) 

before turning into coleoptilar stage (Figure 4D). 
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Figure 4. Progressive development of somatic embryogenesis in MARDI Siraj 297 rice 

callus. The somatic embryogenesis begins with the (A) formation of callus at scutellum 

region, followed by (B) proliferation of proembryogenic cells, (C) globular stage (arrow) 

and (D) coleoptilar stage (arrow) embryos. 

4. Discussion 

The CIF is influenced by PGR constituents [22]. A comparative study on callogenesis potential 

of 15 Indonesian indica rice genotypes showed significant difference in callus induction ability, 

although most of them shared similar genetic background [53]. In this study, all treatments 

containing 2,4-D were able to induce callus formation except for those with low 2,4-D concentration 

of 0.5 and 1.0 mg/L (T1, T2, T8, T15, T16). This was attributable to the function of 2,4-D in inducing 

and regulating callus formation [54], initiating callus growth and reverting differentiated explant cells 

to dedifferentiated (callus) state in order to start proliferation [55]. Studies shown that in vitro callus 

formation is possible when plant tissues were exposed to auxin and cytokinin, whereby the ratio 

between these plant hormones determines the extent of differentiation and dedifferentiation [16,18]. 

However in this cultivar, induction of callus happened either in the presence or absence of cytokinin 

(kinetin), although the growth (represented by the FW) was significantly enhanced by cytokinin 

presence. This suggested that cytokinin might be unessential for callus initiation of MARDI Siraj 297 

cultivar, but important to enhance its subsequent proliferation. 

Although most PGR combinations used in this study were able to induce callus, many of those 

callus were non-embryogenic (Figure 1). Therefore, determination of ECF is required to ensure high 

regeneration potential [37,56,57]. It was obvious that the number of treatments producing 

embryogenic callus (9 treatments) was much reduced from the total number of treatments producing 



545 

AIMS Agriculture and Food  Volume 7, Issue 3, 536–552. 

callus (16 treatments). This is because somatic embryogenesis requires the presence of specific PGR 

treatments in order to achieve embryogenic competence through cells dedifferentiation, chromatin 

restoration, gene expression programming and stressful events [58], which could be highly dependent 

on the PGR composition of medium [18,59]. In this study, auxin level between 2.0 to 3.0 mg/L 2,4-D 

triggered the initiation of embryonic response, thereby allowing somatic cells to acquire 

embryogenic competence [19,24]. However, exposure of explants to high auxins concentration such 

as 2,4-D hinders normal embryo development [30,60], which explains the reason of reduced ECF in 

treatment with the highest 2,4-D concentration (3.5 mg/L) in this study.  

The RF and PPC are two important determinants in plant regeneration establishment protocol 

[21,61–63]. Optimization of synthetic auxin such as 2,4-D during callus induction were previously 

done to achieve high frequency plant regeneration from embryogenic callus of rice [49,64]. The 

stimulatory effect of auxin and cytokinin has been reported to facilitate plant regeneration in various 

rice callus cultures [38,50,65]. The present study revealed that the sole use of 2.5 mg/L and 

combination of 2.0 mg/L 2,4-D with 0.2 mg/L Kin were found to be optimum for complete plant 

regeneration from embryogenic callus while the presence of higher kinetin concentration (0.5 mg/L) 

somewhat reduced the RF. Because the calli in this experiment were regenerated in the same 

regeneration medium, their response during regeneration was mostly dependent on the PGR 

treatments during callus induction. In plant regeneration aspect, somatic embryos are intermediate 

stage between undifferentiated callus and differentiated seedlings from embryogenic calli [64]. A 

study on another monocot plant; buffel grass (Cenchrus ciliaris L.) demonstrated a significant 

positive correlation between the number of embryogenic calli per cultivated explant and the number 

of regenerated plants, whereby cultivars exhibiting high embryogenic callus formation also promote 

an increased number of regenerated plantlets [66]. The almost similar trend was also observed in this 

study, in which treatment that produced high ECF also exhibited higher PPC. 

In callus induction, fresh weight is an important parameter that represents the extent of callus 

growth. In this study, the use of 2,4-D alone (T1 to T7) resulted in lower FW compared to those with 

kinetin (T8 to T21). It was clear that the combination of kinetin with 2,4-D enhanced callus growth 

of MARDI Siraj 297 cultivar. Similar to other plant species, the presence of low kinetin 

concentration below 0.5 mg/L was also reported to increase callogenesis while higher concentrations 

at 1.0 mg/L were inhibitory towards callus growth [36]. In association with cytokinins (kinetin), 

auxins (2,4-D) are able to stimulate cell proliferation and enhance cell differentiation [40]. 

Variation in 2,4-D concentrations in this study has resulted in different morphological response 

on seed explants. Adventitious roots were formed at 0.5 to 1.0 mg/L 2,4-D while higher 

concentrations induced formation of callus, regardless of the kinetin concentration. During tissue 

culture, adventitious roots or shoots can be induced by transferring the callus to medium containing 

different ratios of auxin and cytokinin [67]. The role of auxin in adventitious root development was 

proved to be associated with its uneven distribution within the callus mass, thereby causing partial 

differentiation of callus which leads to formation of root apical meristem [68]. 

In this study, embryogenic calli were derived from scutellum of mature seeds, which was 

previously demonstrated to be the best source of explant for in vitro callus induction and 

regeneration due to its high embryogenic potentiality and availability throughout the year [69–71]. In 

MARDI Siraj 297, embryogenic calli were produced at 2,4-D concentration of 1.5 to 3.5 mg/L 2,4-D, 

although the frequency was much reduced or completely omitted at 3.5 mg/L. It was evident that the 

exposure of explants to high auxins concentration especially 2,4-D hindered normal embryo 
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development [30,60], decreased callus induction and caused callus browning [21]. The 2,4-D is the 

most frequently used PGR for in vitro somatic embryogenesis induction due to its strong auxinic 

activity by influencing endogenous activity of other phytohormones such as IAA [72]. Although its 

exact role in acquiring cells embryogenic competency is still unclear [29], 2,4-D was proved to 

influence the metabolism of endogenous IAA, which was proposed to have significant roles in 

formation of somatic embryo [32,73]. While in other study on Arabidopsis embryo culture, the 

presence of 2,4-D had initiated the procambial cell division at the cotyledons base, which eventually 

expand to the whole cotyledon to form callus on which globular and heart-shaped embryos emerged [64]. 

The typical developmental stages of somatic embryo in monocots as described by [18,74] were 

also observed in this rice cultivar, which involves the formation of proembryo, followed by globular, 

scutellar and coleoptilar stages. Somatic embryogenesis is a distinctive physiological, morphological, 

and molecular changes that involve six phases; induction, expression, multiplication, development, 

maturation, and germination [25]. The somatic embryos derived in the optimized callus induction 

medium in this study had successfully undergone maturation and germination stage of somatic 

embryogenesis that gave rise to the regeneration of whole plantlets. 

Despite previous studies conducted on callus formation and somatic embryogenesis of indica 

rice varieties, there was no single protocol widely applicable for all genotypes since each of them 

responds differently towards PGRs [39,75–77], growth condition [78,79] and other medium 

constituents [80–83]. In fact, studies revealed that some indica varieties are recalcitrant and therefore 

failed to produce embryogenic calli [84]. Due to these shortcomings, PGRs optimization for each 

variety is an important determinant in successful establishment of rice culture. 

5. Conclusions 

In this study, supplementation of 2,4-D and kinetin into callus induction medium at different 

ratio significantly affects callogenesis and embryogenesis of MARDI Siraj 297 rice cultivar. The 

complimentary effect of both PGRs enhanced the callus and somatic embryo formation as compared 

to single 2,4-D application. The maximum growth response was achieved in medium supplemented with 

combination of 2.0 mg/L 2,4-D and 0.2 mg/L Kin, represented by the highest CIF (95%), ECF (90%), 

RF (100%), number of plantlets per callus (22 plantlets) and FW (211 mg), which was accompanied 

by formation of friable embryogenic cells. The optimization of callogenesis and somatic 

embryogenesis medium for MARDI Siraj 297 cultivar is crucial to ensure an efficient establishment 

of embryogenic calli as starting materials for further crop improvement via in vitro genetic 

manipulation. 
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