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A B S T R A C T   

During this anthropocentric period, sustainable energy supply and climate changing could be a main source of 
problem for human being. Scientists believe that the ratio of climate changing and global warming is linked to 
the increase in greenhouse gas increment due to fossil fuels, particularly CO2. According to studies, the building 
sector is a main source of carbon dioxide (CO2) emissions into the atmosphere. Building construction, operation, 
and the use of unclean energy sources have led in a significant quantity of CO2 being emitted into the envi
ronment. As research progresses toward zero-energy buildings and usage of sustainable clean energy, it is critical 
to reduce a building’s total energy consumption and environmental effect throughout its existence. Total energy 
is made up of operational and embodied energy, the latter of which is linked to embodied CO2 (ECO2) emissions 
that relates to the greenhouse effect. CO2 is calculated by multiplying the mass of the materials by the CO2 
coefficients (kg CO2/kg). The findings give useful baseline metrics for each material’s contribution in case of 
mass and ECO2. It was determined that this method could save a significant amount of energy, CO2, and power. 
The major benefits were identified to include greater building performance, a rapid and sustainable design 
processing, increased energy efficiency and the supply of superior design choices.   

1. Introduction 

Global warming has been caused by rising average air temperatures 
led in a few alterations to the climate systems such as the scarcity of raw 
resources and environmental pollution [1–6]. These fast transitions 
occur as humans keeps on emitting heat-trapping greenhouse gases 
(GHG) into the atmosphere [7,109,113]. CO2 is the most significant 
anthropogenic greenhouse gas due to its ability to remain in the atmo
sphere for centuries [8]. Both natural and man-made CO2 emissions are 
conceivable. One of these factors is the advancement of urbanization. 
Along with population increase and the extension of the built environ
ment laterally and vertically, modernization is a dynamic process that 
converts rural areas into urban areas. Many countries have trying to 

have cleaner production and a prime example of this is the reduction of 
cement during the manufacture of concrete [9–13]. The built environ
ment is one of the most essential parts of a country’s economy and social 
progress since it refers to the manufactured surroundings that provide 
facilities and infrastructure for human activities. Thus, urbanization has 
a considerable impact on the construction CO2 emissions and its 
reduction [14–18]. The building sector, in general, includes everything 
from construction through operation, and it is further subdivided into 
residential and non-residential structures [114,116-118]. These 
comprise of the procedures of adding buildings to regions of land beside 
the building’s servicing, operation, and maintenance. The building 
sector is seeing a resurgence in expansion, which has a tremendous 
direct and indirect effect on the environment taken as one of the most 
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waste-producing and waste-producing sectors of the economy [19,110- 
112,115]. This sector’s environmental effect might be divided into three 
classes as public impacts, natural resource impacts, and ecosystem im
pacts [20]. This industry also uses high energy while producing great 
pollutants, such as carbon monoxide, nitrogen oxide, sulfur dioxide, 
particulate matter, and GHG emissions [21]. Fig. 1 shows contribution 
of building to energy ratio by 30%. 

The amount of CO2 in the atmosphere has grown because of this 
sector’s energy use, leading in massive CO2 emissions [22,23]. For every 
tens of buildings, approximately 900 kg of carbon dioxide gas is released 
into the atmosphere [24]; the cement industry alone is responsible for 
nearly seven percent of the global carbon dioxide emissions [25–28]. 
The energy needed for the production and delivery of building materials, 
as well as construction waste management, processing of resources, and 
the needs of construction equipment are all sources of CO2 emissions in 
this sector [29]. The construction industry utilizes a huge quantity of 
nonrenewable energy and emits a large amount of CO2 [30]. Buildings 
account for around 39% of worldwide CO2 emissions each year [31]. 
The building industry is reported to account for more than a third of CO2 
emissions and overall energy consumption in both industrialized and 
developing countries [32]. Therefore, CO2 emission decrement strate
gies are important [33]. Planning for energy saving and execution of 
methods to minimize potential emission mitigation need to be empha
sized to enhance CO2 emission mitigation [34]. The aim of this study is 
to provide a view of concerns, confinements, and mitigation techniques 
in the construction industry to reduce and control CO2 emissions. Fig. 2 
shows the deep path result of 80% less energy demand for buildings in 
globe. 

Construction, engineering, architecture, and business could be a 
major source of pollution, while producing high ratio of carbon emis
sions and waste. The construction industry (CI) is accountable for 
roughly 40% of the pollution in potable water while creating 50% of 
landfill trash. It pollutes the air by ~ 23% [35], consumes 40% of the 
world’s energy, and emits a significant quantity of greenhouse gases. To 
reduce carbon emissions and waste, prefabrication methods are used. 
Green and zero-energy buildings are also being built to offset the 
detrimental effects of CI on climate change [36–41]. The importance of 
greenhouse gas emissions and the implementation of green practice and 
unsustainable was the only emphasis of a recent studies [42]. People in 
poor nations such as Pakistan are ready to invest in and benefiting from 
zero-energy buildings [43]. Building Information Modeling (BIM) is 

useful in both sustainability research and management, as well as in the 
stages of building operations, maintenance, and destruction [44–46]. 
According to certain research, the Green BIM aims are “to meet defined 
sustainability targets through 3D modeling, working and creating with 
coordinating building data across the project life cycle to enhance the 
quality, efficiency, and performance of the building” [44–47]. The ad
vantages for green building and even regular building construction 
include the advantages of cooperation between project stakeholder and 
client [45]. Also, the cost of projects is lowered. Regarding the use of 
BIM for construction projects, sustainable buildings has been recently a 
key trend in CI. BIM and green buildings have a strong relation, ac
cording to project stakeholders [8]. 

BIM systems are popular for addressing classification as well as 
regression issues in recent years [48–52]. This is because the results are 
more dependable than those acquired using traditional procedures 
[53–57]. BIM systems have displayed promise in handling real-world 
issues, particularly non-linear ones [58–63]. Through the implementa
tion and testing of emerging computer models that can approximate the 
mechanical characteristics of concrete mixtures, material science has 
seen substantial growth [64–68]. Companies in the AEC sector use BIM 
for regular projects and the Green BIM concept for sustainable projects 
since the 2010s. BIM-based integrated design methodologies make it 
easier to create green buildings [47]. BIM such as energy simulations, 
software for air analyses, reuse and recycle analyses of construction 
waste are studied for application in the construction, management and 
design of green buildings [44,69–73]. These models could be employed 
to calculate the compressive strength of concrete containing waste or by- 
products [74–77]. BIM models can be utilized to test and verify current 
empirical models that are employed in global standards in the case of big 
and varied databases [78–82]. Furthermore, the Leadership in Energy 
and Environmental Design (LEED) program that certifies green sus
tainable buildings has some suggestions for green building construction, 
such as optimizing green facades, building mass, having green vegetated 
roofs that reuse greywater and control temperatures, and installing 
lighting sensors for optimizing energy usage [83]. As a consequence, this 
study addresses some of these issues by modifying the aforementioned 
factors and analyzing their impacts on energy efficiency, leading in the 
potential achievement of the relevant Sustainable Development Goals 
(SDGs). To date, much research has been performed, for example, to 
connect the accomplishment of SDGs through building material devel
oping and consumption [84]. The authors of a new research for Chinese 

Fig. 1. Contribution of building to energy ratio by 30%.  
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CI explored the challenges to the implementation of sustainable prac
tices and the achievement of SDGs. The particular aims of this research 
are the finding and ranking of BIM elements that have a beneficial effect 
on green buildings, as well as the confirmation of those advantages by an 
integrated energy analysis of a case-study 3D BIM model using Green 
Building Studio (GBS). Social development, environmental protection 
and Economic development are defined as three interdependent factors 
of sustainable development by World Summit Outcome (2005). It dis
plays academics’ efforts in various locations of the globe towards the 
highlighted SDGs’ direct and indirect successes. Despite the fact that the 
concepts of “environmental sustainability” and “sustainable develop
ment” are properly known to the AEC industry for long term, the in
dustry has been regarded in the beginning of managing and controlling 
carbon emissions [44]. After being slammed by devastating global 
warming challenges, unanticipated climatic shifts, environmental 
degradation, a scarcity of energy supplies, and rising energy costs, the 
AEC sector is under constant pressure to reduce energy use in order for 
avoiding carbon emissions and tackling the concerns. As a result, hu
manity and the AEC sector have moved their attention to the construc
tion and developing of low carbon green buildings and environmental 
sustainable communities [84] Green design is best served by an inte
grated design processing; which BIM is well recognized for aiding. 
Taking this into consideration, ongoing efforts are being undertaken to 
investigate the potential of BIM in easing the creation of green buildings. 
BIM has provided several new approaches to manage, predict, and 
monitor the environmental impacts of building via its virtual visuali
zation and prototyping tools. Due to its integration and coordination 
attributes with multiple methodologies such as Mechanical, Plumbing, 
Electrical, and architecture, BIM can enclose and incorporate a large 
amount of information in a single model, assisting in the effective 
analysis of environmental performances and improving sustainability 
measures [44]. BIM is possibly the finest way for merging analog-energy 
buildings, airflow assessments, and building sunlight ecosystems. BIM 
allows us to reduce energy consumption and waste while enhancing 
construction quality [85]. With cutting-edge software such as GBS that 
collects data from its nearest weather station and use cloud computing 
technologies for a variety of building studies, it calculates the annual 
energy consumptions, carbon footprint of a building, and produce and 
consume renewable energy [44]. 

1.1. Energy efficiency opportunities 

The impact of energy saving potential in industry, buildings, electric 
grid and transportation are calculated beside determining the goals that 
are both ambitious and technically feasible, as well as cost-effective. As a 
starting point, by use of Annual Energy Outlook (AEO, 2019), the energy 

efficiency solutions might cut US GHG emissions in half by 2050. They 
would reduce primary energy consumption by 49%. Carbon dioxide 
(CO2) emissions would be cut by 57% as a result of the efficiency gains 
(2.5 billion metric tons). Since there was a transition from fossil fuel use 
to electricity for both automobiles and buildings, the emissions decline 
is higher than the energy falls. When additional GHGs like methane are 
included, in overall GHG emissions in 2050 are reduced by 49%. The 
following are the top sector-specific saving opportunities: Vehicles that 
are both efficient and electric in 2050, a move to electric cars and trucks 
(80% of light-duty vehicles and 45% of heavy-duty vehicles) combined 
with sustained fuel economy advances under revised regulations may 
reduce vehicle carbon dioxide emissions by ~ 50%. Smart 
manufacturing and strategic energy management could reduce indus
trial energy usages and emissions by 15% while industrial processes, 
new technologies, and feedstock (including electrification strategies) 
could save extra 14%. 

1.2. Transportation system efficiency 

Less driving in vehicles and light trucks, increased freight efficiency, 
and more effective airplanes and aviation may reduce emissions by 30%, 
25%, and 53%, respectively. Energy efficiency enhancements may 
reduce energy use and emissions by roughly 18% for houses and 23% for 
commercial buildings, while smart control systems might reduce energy 
use and emissions by 18% for commercial buildings and 11% for homes. 
Electrification of remaining loads reduces emissions by an extra 13%. 
New zero-energy buildings and residences efficient design of commer
cial and residences including electrification and use of renewable power 
to meet typical yearly needs could reduce emissions by up to 80%. 
Updated efficiency requirements and expansion of the ENERGY STAR® 
program may reduce total residential emissions by 13%. Table 1 rep
resents Ranking of BIM factors. 

1.3. Construction related carbon emission 

In 2004, direct emissions from the building sector were about 3 GT 
CO2, 0.4 GT CO2-eq CH4, 0.1 GT CO2-eqN2O and 1.5 GT CO2-eqhalo
carbon. Because mitigation in this sector involves several actions tar
geted at reducing power use, it’s helpful to compare mitigation potential 
to CO2 emissions comprising of those caused by electricity usage. 
Energy-related CO2 emissions comprising of those from electricity 
usage, 8.6 GT/yr, accounting for about a quarter of world total CO2 
emissions [87]. Construction industry is a big user of all types of energy 
and a major contributor to emission. India’s construction sector ac
counts for around 22% of the country’s total yearly CO2 emissions. The 
products/industrial processing of energy demanding building materials, 

Fig. 2. The deep path result of 80% less energy demand for buildings in globe.  
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such as lime, bricks, cement, steel, and aluminum account for 80% of the 
emissions from the construction industry [88]. Furthermore, as the 
world’s population grows, the need for these materials raises as well, 
notably in housing that stands for about 60% of the resources used by 
the construction industry each year [89]. Construction material pro
duction is mostly reliant on traditional energy sources. Coal is still the 
most common fuel used to generate energy. Nonetheless, high-capacity 
nuclear power and renewable energy sources partially replace coal in 
power generation, resulting in CO2 emissions reductions of 10% and 4%, 
respectively. Saradhi et al. found that cumulative CO2 emissions for 
2005 to 2035 in various cases are much lower 33% in the low-growth 
scenario. Likewise, as compared to the business-as-usual scenario, the 
strong renewable scenario reduced CO2 emissions by 4%. Enhancing 
building energy efficiency, replacing high CO2, CO2 emission fuels with 
low CO2 emission per MJ fuels, replacing fossil fuels with renewable 
technology, and accelerating the use of high-performance heat pump 
method are all basic measures for reducing building-related emissions 
[90]. A systematic method is required to reduce carbon emissions from 
the energy industry across the world. To accomplish quick improve
ment, a mix of market mechanisms and regulation would be more suc
cessful [91]. Improved energy efficiency of a building is the best 
alternative among numerous solutions to be developed for fulfilling 
energy demand and minimizing CO2 emissions [92]. Improving energy 
efficiency in existing buildings is clearly one of the best sustainable and 
viable ways to decrease carbon and energy costs [93]. 

2. Carbon emissions 

Climate change has far-reaching consequences; some of them are 
currently unclear. Increased atmospheric greenhouse gases are the pri
mary driver of climate change. The burning of fossil fuels is one of the 
primary contributors of greenhouse gases. The most harmful greenhouse 
gas is CO2 [94]. “They were astonished to discover from the record 
inscribed in ice cores that the Earth had often suffered rapid and severe 
fluctuations in temperature. Since then, they’ve compiled a thorough 
account of the last 800,000 years. Temperature, CO2 levels, and sea 
levels have unusually close correlations: they all increase and fall 
together, practically in lockstep. Carbon dioxide is estimated in parts per 
million (ppm), which indicates how many CO2 molecules are presented 
per million dry air molecules [95]. Carbon dioxide levels in the past 
varied from 180 ppm to 300 ppm, according to measurements derived 
from ancient air bubbles frozen in ice. CO2 levels were 280 parts per 
million before the industrial revolution. It peaked at 315 ppm in 1950 
then reached 385 ppm in 2012, greatly above previous highs [95]. Fig. 3 
show energy consumption of 20 and 60% for heating and cooling, 
respectively in 2021 in globe. Table 2 shows CO2 emission in different 

products. 
Beside fossil fuels, deforestation is a key source of carbon emissions, 

accounting for up to 15% of total emissions. Forest destruction both 
releases stored carbon from soils and plants and lowers the number of 
trees available to absorb CO2. If humanity is to avoid the devastating 
effects of climate change, significant decreases in carbon emissions are 
required. To limit the ratio of climate changing, experts predict that 
greenhouse gas emissions must be eliminated by 2050. Reducing carbon 
emissions isn’t as difficult as it may appear. A carbon footprint study 
examines the carbon emissions produced by various human activity. The 
content, origin, sinks, and removal ratio of greenhouse gases are all 
measured in a carbon footprint study. These measures are combined to 
establish the net emission rates of various activities and processes 
associated with an event, product, or service [96]. Since it is an 
assessment of total greenhouse gas emissions, carbon footprint analysis 
is also known as “greenhouse gas inventory.” Since carbon is the most 
prevalent gas emitted by human activity, the other greenhouse gases are 
changed to carbon equivalents. According to Franchetti and Apul’s 
Carbon Footprint Analysis, “in order to have one unit for presenting 
results, emissions from other gases are normalized to the mass of CO2, 
and the carbon footprint results are presented as mass of CO2 equivalent 
(CO2e)” [96]. Carbon footprints are often calculated by data collection 
and measurement, as well as a tour of the facility, if one is available. 
Following the collection of the essential information, suggestions are 
developed to boost efficiency and minimize energy usage, hence 
lowering costs and emissions. The use of energy is not the only source of 
greenhouse gases in the atmosphere. When doing a carbon footprint 
study, additional sources, such as land-use, industrial operations, 
forestry, agriculture, land-use change, and waste are frequently signifi
cant [96] Fig. 4 show appropriate design of cites to less pollution and 
quieter. 

3. Considerations for whole building performance 

One of the most important tactics for reducing a building’s energy 
consumption is to examine the ’whole building performance than just 
combining low-energy solutions. The climate, design, and envelope are 
the most crucial factors to consider. The link between these factors is 

Table 1 
Ranking of BIM factors. AI: Average Index [86].  

Rank No. Factor AI 

1. Quick and Sustainable Design Process  4.4828 
2. Improved Energy Efficiency  4.4483 
3. Enhanced Building Performance  4.3448 
4. Provision of Better Design Alternatives  4.3103 
5. n-Dimensional Visualization  4.2759 
6. Improved Facility Management  4.2414 
7. Green Innovation and Supply Chain Collaboration  4.1724 
8. Better Project Definition  4.1379 
9. Construction Waste Reduction  4.1034 
10. LCA of Energy, Water, and Fuel Usage  3.9655 
11. Calculations of Water Availability and Usage  3.8621 
12. Quantification of Rainwater Harvesting Systems  3.7586 
13. Carbon Saving during Building Operation  3.6552 
14. Estimation of Grey Water Reuse Potentials  3.6207 
15. Viable Options for Low Carbon Footprint  3.3448 
16. Estimation of Potential Green Energy Production  3.3437 
17. Efficient Procurement of Materials  3.3432  

Fig. 3. Energy consumption of 20 and 60% for heating and cooling, respec
tively in 2021 in globe. 

Table 2 
CO2 emission in different products.  

Sub-sector Mt CO2 

Wood and wood products 1.8 
Paints, varnishes, printing ink etc 0.1 
Rubber products 0.6 
Plastic products 3 
Glass and glass products 1.1 
Structural clay products, Cement, lime and 9.6  
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critical to creating an energy-efficient building with minimal carbon 
emissions. 

3.1. Climate 

Before designing a building for most energy properness in a specified 
area, the climate of the area need to be analyzed. Following the climate 
data of the Natural Resources Conservation Service Water and Climate 
Center, these data includes relative humidity, heating and cooling 
degree-days, wind speed, temperature, and sunshine [97]. 

3.2. Thermal comfort 

Many factors influence whether or not a person feels at ease in their 
surroundings. Too cold, too hot, wet, or dry, activity levels, and thermal 
obstacles like clothes vary by location. The psychometric diagram is a 
simple approach to comprehend the interrelationships of the environ
ment’s thermal statues. The chart takes into account specified humidity, 
air temperature, and relative humidity to establish the best effective 
thermal comfort measures [97]. 

3.3. Lighting 

Since lighting is the 2nd greatest user of power in buildings, it is 
critical to consider daylighting options. Artificial lighting, although 
lowering direct electric demand, could contribute to the cooling load in 
the summer [97]. The electric load could be reduced significantly by 
designing the building to proper day lighting distribution. One purpose 
of day lighting is to diffuse sunshine so that routine activities may 
continue indoors without overheating workstations [97]. The direction 
of the windows, like shading, must be taken into consideration. East and 
west facing windows only receive half of the day’s sunshine, and receive 
more sun in the summer than in the winter. As a result, north and south 
windows are better for letting in light. Since vertical windows only reach 
a certain distance, the shape of the structure affects how much floor 
space may profit from windows [97]. The most usable light comes from 
horizontal windows that are spaced out. To lessen the quantity of glare, 
it’s also beneficial to have windows on many walls. It is recommended to 
place windows on opposite walls so that light is distributed evenly [97]. 

3.4. Analysis of structure of changes in CO2 emissions 

From 2005 to 2009, CO2 emissions related with energy use grew in 
general as seen in Fig. 5. Between 2005 and 2006, CO2 emissions 
increased at a very rapid rate. Since average earnings climbed faster 
than energy properness and the deployment of energy-efficient struc
tural measurements, the rate of CO2 emissions grew. In 2007 the 
increment was 5.85 times of that in 2006. Though the general energy 
usage was raised, the incremental margin was led from energy efficiency 
after 2007. So, the structural alterations were raised in energy due to 
occurrence of the relevant energy-saving work. The rising margin caused 
by average incomes could be mitigated, resulting in lower CO2 emissions 
in 2008 that were 1.19 times higher than in 2007. Fig. 6 depicts the 
shifting emissions and the impact of several factors, using 2007 as the 
base year. The rise in CO2 emission and energy usages was mostly due to 
rising average income. Meanwhile, increased energy effectiveness was a 
key factor in lower energy usage and CO2 emissions that can somewhat 
counterbalance the impact of changes in average income. Furthermore, 
the reduction in CO2 emissions was unaffected by a change in energy 
structure. Fig. 7 depicts the link between the rise of CO2 emissions and 
the contraction of GDP, as measured by energy efficiency. The offset ΔCI 
was weak in pre measurement of energy-saving in 2007. After this 
transformation, the adverse proportion of change obviously accelerated, 
and ΔCR was still raised. Nevertheless, the situation has been improved 
as a result of the present high cost of energy usage. The improvement of 
energy usage efficiency may greatly limit the pace of CO2 emission in
crease, according to this investigation on energy-saving renovation and 
carbon emission falling in public buildings. There is a significant dif
ference between industrialized nations in terms of current energy con
sumption efficiency, so there is still a lot to improve. In the field of 
energy saving and improving energy efficiency, several strategies such 
as the utilization of waste pressure and heat, green lighting, building 
energy conservation etc. might be enhanced to produce a stable energy- 
saving level. 

4. Carbon dioxide emissions from building energy consumption 

The building industry generates up to one-third of greenhouse gas 
emissions due to energy usage, mostly by using fossil fuels throughout 
their operating period in both developing and developed nations. These 

Fig. 4. Appropriate design of cites to less pollution and quieter.  
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emissions are expected to be accelerate than other economic sectors 
during the next 25 years [98,99]. CO2 emissions from energy utilization 
are classified into two types: emissions from the electricity used to cool, 
heat, and power buildings and direct emissions from on-site burning of 
fuels for cooking and heating. The relationship between these two forms 
of CO2 emissions and building service demand might vary greatly from 
year to year based on the factors that influence them [100]. Some 
methodologies are utilized to analyze the relationship between energy 
usage and CO2 emissions, resulting in energy conservation and CO2 
emission reduction [101]. In terms of a process combination and 
input–output assessments, system accounting for overall energy usage 
and CO2 emissions generated by buildings is shown [102]. Furthermore, 
CO2 emissions and energy usage may be measured using a life cycle 
measurement that considers all stages of building construction and 
operation [102]. Additional enhancements in environmental and energy 
management may be developed based on the techniques using a con
crete procedure that covers diverse materials, personnel input, equip
ment, and operating costs. Unlike fossil fuels, most of these renewable 
energy methods produce less or no CO2 emissions [103,104]. Moreover, 

a variety of well-established and widely utilized methods, such as low- 
carbon appliances, high-efficiency HVAC systems, energy efficient 
technologies, and smart design may highly decrease energy usage and 
CO2 emissions [105–107]. Despite their capacity to cut CO2 emissions, 
the contribution of these techniques is highly based on economic rivalry 
between the society and these technologies and varies significantly by 
nation and location [108]. As a result, the function of these techniques in 
lowering CO2 emissions and mitigating climate alter in buildings need to 
be further investigated, taking into consideration the overall economic 
analyses, cost, end-use efficiency measures, and socio-cultural advan
tages and limitations. 

4.1. The role of energy efficiency and insulation in global climate change 

Energy efficiency is described as cost-effective methods of reducing 
energy usage by existing and upgraded technology as well as smart 
energy management practices. Energy efficiency is based on the basic 
principle that if people use low energy, there would be low greenhouse 
gas emissions due to fossil fuel combustion. As a result, both developing 

Fig. 5. The incremental ratio of emissions of CO2 related with energy consumption (2005 to 2009).  

Fig. 6. The changing emissions and the effect of lightening and climate from 2000 to 2021.  
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and developed countries will have access to more fossil fuels that may be 
utilized for various reasons. As a result, energy efficiency technology 
and practices could help to mitigate the threat of global warming. 
Insulation is one of the simplest and most effective energy-saving mea
sures available today. Personnel protection, sound management, ther
mal performance, fire protection, condensation control, and personal 
comfort are just a few of the many advantages of insulation. Insulation 
products that are made from a range of materials such as foam, mineral 
wool, fiber glass, and other materials are primarily intended to limit heat 
transmission through building structures in residential, commercial, and 
industrial applications. Insulation products enable consumers to save 
more energy and emit fewer pollutants per year than its manufacturing. 
As a consequence, the environmental balance and total energy for 
thermal insulation is quite beneficial. Fig. 8 shows role of energy effi
ciency in reducing the threat of global climate change. 

5. Conclusion 

Nowadays, construction industry uses a substantial ratio of energy 
and emits almost an equivalent amount of CO2 emissions. This propor
tion is expected to rise in the future year due to significant changes in 

lifestyle and technology. It was also said that economic improvement, 
building size, tenant behavior, climatic, service needs, urban density, 
spatial organization, building operation, building life, and geographic 
location all have an impact on energy consumption in buildings. Thus, in 
order to solve this challenge and reduce the impact of climate change, 
new tactics and techniques that take these aspects into consideration, as 
well as the deployment of renewable energy technology need to be 
explored in the future for reducing energy uses in buildings. As the 
initial stage in every building energy-saving project, diagnosing and 
analyzing building energy usage and CO2 emissions is critical to improve 
building energy management. CO2 emissions are controlled by the car
bon content of energy, which is determined by the energy supply system. 
The adverse rate of change of substantially accelerated after the build
ing’s alteration. Nonetheless, despite high energy consumption costs, 
the existing situation has been developed. According to the results of the 
research above, while changes in energy structure contribute less to CO2 
emissions, the pace of rise in CO2 emissions could be slowed to some 
amount if the consumption of new energy sources such as gas and wind 
energy sources is increased. 

1 2 3 4 5 6 7 8 9 10 11 12 13
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Fig. 7. The relationship between the increase of CO2 emissions set toward building GDP and its shrinkage.  

Fig. 8. Role of energy efficiency in reducing the threat of global climate change.  
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