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Abstract Among the most crucial research areas in data mining is association rule
mining (ARM). Rules are classified into two types: frequent rules and least frequent
rules. Extracting the least association rules is more difficult and always leads to the
“rare item problem” quandary. The rules with the fewest items are known as the
“least association rules.” However, most data mining tools favour frequent asso-
ciation rules over the least frequent association rules. Furthermore, the process of
extracting the least association rules is more difficult. Therefore, this paper proposes
and develops Causality Least Association Rules Algorithm Tool (CLART) using the
Rational Unified Process (RUP) methodology and the C# programming language.
The results showed that CLART is workable, and the proposed algorithm also outper-
formed the existing benchmark algorithm. In addition, CLART is a dedicated tool
that is freely available and can be used to extract the causality least association rules
from the benchmarked datasets.
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1 Introduction

Rational Unified Process (RUP) [1] is a kind of agile software development method-
ology. It was invented by the Rational Software Corporation, one of IBM’s divisions,
in 2003 for an iterative software development process framework [2]. RUP is also
referred to as a software engineering process that relies on a web-enabled, searchable
knowledge base [3, 4].

Association Rule Mining (ARM) is among the most widely used algorithms in
data mining. Today, ARM is still active and has attracted a lot of attention from
researchers in the field of data mining [4—13]. ARM is typically used to reveal all
association rules [14] with support and confidence values greater than predefined
minimum support and confidence [15]. However, most of the algorithms indirectly
ignore the occurrence of the least association rules. In other words, by using the
typical minimum support in the algorithm, it will accidentally exclude the least
association rules.

The least association rule refers to an association rule forming between the least
frequent items or among the leastitems. The presence of these items in relation to least
association rules in some disciplines is extremely significant and necessitates close
attention. For example, to identify relatively rare diseases, predict telecommunication
equipment failure, find abnormal reactions in nuclear plants, and find associations
between the least purchased items [16].

The Bayesian Network (BN) [17] is a graphical model that encapsulates prob-
abilistic correlations between the relevant variables. BN comprises statistical tech-
niques that blend together domain knowledge and data. Causal semantics in BN
makes the encoding of causal prior knowledge extremely simple. Additionally, BN
also uses probabilities to express the strength of causal linkages [18].

However, most of the existing data mining tools, such as WEKA [19], RapidMiner
[20], H20 [21], etc., are focusing more on extracting the frequent association rules.
In reality, the extraction of the fewest association rules is not simple and is frequently
plagued by the problem of a computer’s memory overflow. This paper proposes an
improved algorithm called Causality Least Association Rules, which is based on
Apriori [22] and .Net Framework 3.5 [23]. Various ranges of predefined minimum
support thresholds are employed to discover these rules. RUP methodology was
employed rather than the typical Waterfall Methodology for developing the Causality
Least Association Rules Algorithm Tool (CLART).

The organisation of the paper is as follows. Section 2 explains work done by
others. Section 3 highlights the basic concepts and terminology. Section 4 focuses
on the methodology for developing the algorithm and its tool. Section 5 elaborates on
the result and discussion, particularly the performance of the developed tool. Finally,
the paper is concluded with a short summary in Sect. 6.
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2 Related Works

As noted in the introduction, the Apriori algorithm is a fundamental and popular
algorithm for ARM. This algorithm was proposed by Agrawal et al. [22]. It mines
frequent item sets using prior knowledge of frequent item properties. In terms of
execution, it uses a level-wise search, an iterative method that uses k-itemsets to
examine (k + /) items.

Koh and Rountree [24] suggested a method to find the least rules with candidate
itemsets that are between minimum and maximum support values. They developed an
algorithm known as Apriori-Inverse to quickly discover sporadic rules with a number
of variations, such as the rare connection of two frequent symptoms pointing to a
rare disease.

Kohetal. [25] proposed the RSAA algorithm to constructrules in which significant
rare itemsets take part without any “magic numbers” given by the user. In this method,
relative support (RSup) is used in place of minimal support. The support threshold
is lowered by this method for items with a very low frequency and raised for things
with a high frequency.

WEKA (the Waikato Environment for Knowledge Analysis) is one of the most
prominent open-source machine learning and data mining algorithms. It used Java
programming by the University of Waikato, New Zealand. Another free and open-
source tool for data and text mining is called RapidMiner. It is one of the most popular
data science tools. H,O is a piece of open-source software developed by the H,O.ai
Company. It provides heterogeneous, conventional analytics mechanisms.

3 Basic Concepts and Terminology

3.1 Association Rules

The association rule is a statement of the form {X1, X2, ..., Xn} => Y, meaning
that if X1, X2, ..., Xn are all found in the market basket, then there is a good chance
of finding Y. The likelihood of discovering Y is called the confidence of the rules.
Typically, only rules with confidence levels greater than a specific threshold are
maintained.

The association rule is a statement of the form {X1, X2, ..., Xn} =>Y, indicating
that if X1, X2, ..., Xn are all discovered in the market basket, there is a strong
likelihood of finding Y.
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Fig. 1 The five attributes of
the Bayesian network

3.2 Apriori Algorithm

Apriori [22] employed the large itemset property, whereby any subset of a large
itemset must also be large. The large itemsets are also referred to as “downward
closed,” because if an itemset satisfies the minimum support requirements, all of its
subsets are also applied. The fundamental principle of the Apriori algorithm is the
construction of candidate itemsets based on a specific size (n), followed by a database
search to count them and evaluate whether they are large or not.

3.3 Bayesian Network

The Bayesian Network (BN) [26] is a model that makes use of conditional probabil-
ities among several variables. It is generally impossible to generate all conditional
probabilities from a given dataset. Informally, the vertex set and directed edge set of
BN serve as representations of an enhanced directed acyclic graph. An example of
the five attributes of BN is shown in Fig. 1.

3.4 Least Association Rules

In some cases, it may be very interesting to look for the fewest itemsets, that is,
itemsets that do not appear frequently in the data. To extract the least association
rules, they should at least comply with two requirements; first, it should be the
minimal and simplest association rule set, and second, its predictive power should
not be weaker than the complete association rules.
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4 Methodology

The Relational Unified Process (RUP) [1] approach has been adopted for creating
CLART. RUP is a well-defined system process, often used to develop software based
on object-based and/or component-based technologies. RUP is among the modern
process models derived from the Unified Modeling Language (UML) and Associated
Software Development Process [27]. RUP divides software development into four
stages: inception, elaboration, building, and transition. Each stage includes a single
or more executable iterations of the software at that level of development.

4.1 Inception Phase

The business case is established at the end of this phase. To demonstrate the primary
functionalities provided by the causality least association rules, a basic use case
diagram is created. Figure 2 depicts a use case diagram with one (1) actor named

99 ¢

“User” and five (5) main use-cases: “load datasets”, “generate association rules using
the Apriori algorithm”, “generate least association rules using RSAA”, and “analyse
performance”. First, open the datasets, which are in text file format, as an input to
generate association rules. Three algorithms are developed: Apriori, CLART, and

RSAA.

4.2 Elaboration Phase

The elaboration phase is where the developers examine the project more thoroughly.
It involves an analysis of how the development of CLART workflow is performed.
The basic data characteristics and restrictions that may occur during the develop-
ment of an algorithm will be taken into consideration. All related diagrams, such as
relational entity classes, diagrams, activity diagrams, basic GUIs, and Gantt charts,
are produced to provide a clear perspective on the project.

Figure 3 shows the activity diagram for generating association rules using a stan-
dard algorithm use case. An association rule is generated when it fulfils the minimum
support and minimum confidence values. Users are required to determine what the
minimum support and minimum confidence values are. The user needs to select the
dataset for generating the association rules. All single items in the dataset are counted
and then compared to the minimum support value threshold. The items that satisfy
this threshold will be used in generating the association rules. Then, these association
rules will be filtered by a minimum confidence threshold value.

Figure 4 shows the activity diagram for generating the least association rules using
the least Apriori algorithm Least items are generated once they satisfy the interval
support, which includes minimum and maximum support. Items that fall within the
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uc Actors

Load the datasets

Generate association
rules using standard
algorithm

Generate least
associaton rule

User

Generate least
association rules using
RSAA

Analyze performance

Fig. 2 Use case diagram

interval support range are considered the least. Least frequent items and frequent
items are then joined together to form the desired association rules. Any association
rule that fails to fulfil the minimum support and Bayesian network values will be
pruned out.

Figure 5 shows the activity diagram for generating the least association rules using
RSAA. RSAA uses two supports: the first is to find the frequent item and the second
is to find the least frequent item. An item’s support is compared to its first and second
supports. The joining step is used to generate the least association rules, which are
then compared to minimum and relative support.
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act Generate ARs using apriori /

No

Specify user threshold
minsup and min confience

Gead the data in dataset)

Fulfill minsup value

Generate association
rules

No
Fulfill min confidence

Yes

Gisplay association rules)

~®

Fig. 3 Activity diagram to generate association rules using standard algorithm

4.3 Construction Phase

587

All codes are created in Microsoft C# at this point. A thorough model illustrating
the fundamental workflow is produced. The model makes it very obvious how the
Microsoft C# programming language is used to link and interact with the data and
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Fig. 4 Activity diagram to

act Generate ARs using least apriori /

generate least association
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Specify interval support
and min BN v alue

Gead the data in dataseD
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Combine least item and
frequent item
Generate least

association rules
Compare with minsup and
BN value
Display least association
rules

procedures in the causality least association rules algorithm. Figure 6 depicts the
overall model of causality development using the least association rules together

with the least Apriori algorithm.
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Fig. 5 Activity dla{%“%m to act Generate least ARs using RSAA /
generate least association

rules using RSAA

support

Gead the data in dataseD

Compare with 1st suppoﬁ

Specify 1st support, 2nd
support and relative

and 2nd support

Generate least
association rules

Display least association
rules

There are three (3) phases involved in the development of causality least associa-
tion rules. Basically, it covers the generation of association rules based on three algo-
rithms: the standard algorithm (Apriori), the Least Apriori algorithm, and the RSAA.
The association rules are generated by comparing the first support, second support,
and relative support. After the phases are completed, the performance (processing
time) of three (3) algorithms is compared.
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Apriori v Least Apriori v RSAA v
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Fig. 6 An overview model of CLART

Phase 1 is to generate association rules using the standard Apriori algorithm.
The association rule is generated by comparing the minimum support and minimum
confidence, which are predefined by the user. Phase 2 is the development of causality
least association rules using the least Apriori algorithm. Less frequently occurring
but highly associated itemsets are generated. However, phase 3 is to generate the least
association rules using RSAA. The association rules are generated by comparing the
first support, second support, and relative support. After the phases are completed,
the performance of two (3) algorithms is compared. An overview of the model is
presented in Fig. 6.

4.4 Transition Phase

In the final phase, the tool is developed. To make sure there are no defects or mistakes,
the testing process will be run many times. Coding fixes will be made until all
problems and errors have been fixed, if any are found during testing. Not only will
the function be tested, but the user interfaces will also be considered and may be
commented on and changed to meet the needs.
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5 Results and Discussion

The experiments were run on a PC with the specifications of a Core i17-8565U
processor, 12 GB of RAM, a 512 GB SSD, and the Windows 10 operating system.
The characteristics of the Mushroom datasets used in experiments are shown in Table
1.

Figure 7 shows association rules generated using the standard algorithm (Apriori).
The processing time and number of rules generated are also shown.

Figure 8 depicts the RSAA algorithm’s least association rules. The processing
time and number of rules generated are also shown. The causality least association
rules generated by the Least Apriori algorithm are shown in Fig. 9. The processing
time and the number of rules generated are also shown.

Figure 10 shows the overall result of the performance analysis according to the
three (3) algorithms. The processing time and number of generated rules are also
displayed. The processing time for both the Least Apriori algorithm and RSAA to
generate association rules is significantly faster than that of the classical or standard
algorithm (Apriori). Both the Least Apriori algorithm and the RSAA have the same

Table 1 Characteristics of the mushroom datasets
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Fig. 7 Association rules generated by Apriori algorithm
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Fig. 9 Causality least association rules generated by the Least Apriori algorithm

number of rules as the standard algorithm (Apriori). Although both algorithms share
the same number of generated rules, the Least Apriori algorithm is faster at 3.23%
than RSAA.
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Fig. 10 Overall performance result analysis

6 Conclusion

This study proposed and developed the Causality Least Association Rules Algorithm
Tool (CLART) using the Rational Unified Process (RUP) methodology. A compara-
tive analysis has been carried out on these three algorithms’ performance. The results
show that CLART can be used to extract the desired least association rules, and it
also outperformed the existing benchmark algorithms, i.e., the standard algorithm
(Apriori) and the RSAA. CLART is an open-source tool to extract the causality
least association rules from benchmark datasets such as the UCI Machine Learning
Repository, Kaggle, Google Dataset Search, etc.
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