Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2620
DC FieldValueLanguage
dc.contributor.authorNies H.W.en_US
dc.contributor.authorMohamad M.S.en_US
dc.contributor.authorZakaria Z.en_US
dc.contributor.authorChan W.H.en_US
dc.contributor.authorRemli, MAen_US
dc.contributor.authorNies Y.H.en_US
dc.date.accessioned2022-01-16T03:32:28Z-
dc.date.available2022-01-16T03:32:28Z-
dc.date.issued2021-09-
dc.identifier.issn10994300-
dc.identifier.urihttp://hdl.handle.net/123456789/2620-
dc.descriptionWeb of Science / Scopusen_US
dc.description.abstractArtificial intelligence in healthcare can potentially identify the probability of contracting a particular disease more accurately. There are five common molecular subtypes of breast cancer: luminal A, luminal B, basal, ERBB2, and normal‐like. Previous investigations showed that pathway-based microarray analysis could help in the identification of prognostic markers from gene expres-sions. For example, directed random walk (DRW) can infer a greater reproducibility power of the pathway activity between two classes of samples with a higher classification accuracy. However, most of the existing methods (including DRW) ignored the characteristics of different cancer sub-types and considered all of the pathways to contribute equally to the analysis. Therefore, an enhanced DRW (eDRW+) is proposed to identify breast cancer prognostic markers from multiclass expression data. An improved weight strategy using one‐way ANOVA (F‐test) and pathway selection based on the greatest reproducibility power is proposed in eDRW+. The experimental results show that the eDRW+ exceeds other methods in terms of AUC. Besides this, the eDRW+ identifies 294 gene markers and 45 pathway markers from the breast cancer datasets with better AUC. There-fore, the prognostic markers (pathway markers and gene markers) can identify drug targets and look for cancer subtypes with clinically distinct outcomes.en_US
dc.description.sponsorshipUniversiti Malaysia Kelantanen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofEntropyen_US
dc.subjectANOVAen_US
dc.subjectBreast canceren_US
dc.subjectDirected random walken_US
dc.subjectMicroarray analysisen_US
dc.subjectMulticlassen_US
dc.subjectPathway selectionen_US
dc.subjectPrognostic markersen_US
dc.titleEnhanced directed random walk for the identification of breast cancer prognostic markers from multiclass expression dataen_US
dc.typeNationalen_US
dc.identifier.doi10.3390/e23091232-
dc.volume23 (9)en_US
dc.description.articleno1232en_US
dc.description.typeArticleen_US
dc.description.impactfactor2.524en_US
dc.description.quartileQ2en_US
item.languageiso639-1en-
item.openairetypeNational-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Faculty of Data Science and Computing - Journal (Scopus/WOS)
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.