Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/387
DC FieldValueLanguage
dc.contributor.authorKamfa K.en_US
dc.contributor.authorWaziri M.Y.en_US
dc.contributor.authorSulaiman I.M.en_US
dc.contributor.authorIbrahim M.A.H.en_US
dc.contributor.authorMamat M.en_US
dc.date.accessioned2021-01-17T05:01:08Z-
dc.date.available2021-01-17T05:01:08Z-
dc.date.issued2020-
dc.identifier.issn1943023X-
dc.identifier.urihttp://hdl.handle.net/123456789/387-
dc.descriptionScopusen_US
dc.description.abstractRecently, several three-term conjugate gradient (CG) methods have been proposed to improve the performance of the FR CG formula. Most of the methods have convergences lapses under different line search including Armijo line search and Wolfe line search. Motivated by this, in this paper we modified the FR CG method and proposed a new three-term CG method. The anticipation is to improve the FR formula while keeping its sufficient descent as well as the global convergence properties under strong Wolfe condition. Numerous standard test problems have been used to generate the numerical results. The outcomes show that the new method is robust and efficient when compared with other famous CG methodsen_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Advanced Research in Dynamical and Control Systemsen_US
dc.subjectConjugate parameteren_US
dc.subjectLine searchen_US
dc.subjectSearch directionen_US
dc.subjectStep sizeen_US
dc.subjectUnconstrained optimizationen_US
dc.titleAn efficient three term cg method using a modified fr formula for solving unconstrained optimization problemsen_US
dc.typeInternationalen_US
dc.identifier.doi10.5373/JARDCS/V12SP2/SP20201160-
dc.description.page1027-1034en_US
dc.volume12 (2si)en_US
dc.description.typeArticleen_US
item.languageiso639-1en-
item.openairetypeInternational-
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:Faculty of Entrepreneurship and Business - Journal (Scopus/WOS)
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.