Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/4864
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Balasubramanian, PK | en_US |
dc.contributor.author | Lai, WC | en_US |
dc.contributor.author | Seng, Gan Hong | en_US |
dc.contributor.author | Kavitha, C | en_US |
dc.contributor.author | Selvaraj, J | en_US |
dc.date.accessioned | 2023-09-03T04:38:16Z | - |
dc.date.available | 2023-09-03T04:38:16Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 20726694 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/4864 | - |
dc.description | Web of Science | en_US |
dc.description.abstract | Diagnosis and treatment of hepatocellular carcinoma or metastases rely heavily on accurate segmentation and classification of liver tumours. However, due to the liver tumor’s hazy borders and wide range of possible shapes, sizes, and positions, accurate and automatic tumour segmentation and classification remains a difficult challenge. With the advancement of computing, new models in artificial intelligence have evolved. Following its success in Natural language processing (NLP), the transformer paradigm has been adopted by the computer vision (CV) community of the NLP. While there are already accepted approaches to classifying the liver, especially in clinical settings, there is room for advancement in terms of their precision. This paper makes an effort to apply a novel model for segmenting and classifying liver tumours built on deep learning. In order to accomplish this, the created model follows a three-stage procedure consisting of (a) pre-processing, (b) liver segmentation, and (c) classification. In the first phase, the collected Computed Tomography (CT) images undergo three stages of pre-processing, including contrast improvement via histogram equalization and noise reduction via the median filter. Next, an enhanced mask region-based convolutional neural networks (Mask R-CNN) model is used to separate the liver from the CT abdominal image. To prevent overfitting, the segmented picture is fed onto an Enhanced Swin Transformer Network with Adversarial Propagation (APESTNet). The experimental results prove the superior performance of the proposed perfect on a wide variety of CT images, as well as its efficiency and low sensitivity to noise. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | Cancers | en_US |
dc.subject | adversarial propagation | en_US |
dc.subject | classification | en_US |
dc.subject | computed tomography | en_US |
dc.subject | enhanced swin transformer network | en_US |
dc.subject | liver tumor segmentation | en_US |
dc.subject | median filtering | en_US |
dc.title | APESTNet with Mask R-CNN for Liver Tumor Segmentation and Classification | en_US |
dc.type | International | en_US |
dc.identifier.doi | 10.3390/cancers15020330 | - |
dc.volume | 15 (2) | en_US |
dc.description.articleno | 330 | en_US |
dc.description.type | Article | en_US |
dc.description.impactfactor | 5.2 | en_US |
dc.description.quartile | Q2 | en_US |
item.languageiso639-1 | en_US | - |
item.openairetype | International | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Faculty of Data Science and Computing - Journal (Scopus/WOS) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
APESTNet-with-Mask-RCNN-for-Liver-Tumor-Segmentation-and-ClassificationCancers.pdf | 3.22 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.