Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4938
DC FieldValueLanguage
dc.contributor.authorAl Amien, J.en_US
dc.contributor.authorGhani, H.A.en_US
dc.contributor.authorSaleh, N. I. M.en_US
dc.contributor.authorIsmanto, E.en_US
dc.contributor.authorGunawan, R.en_US
dc.date.accessioned2023-10-16T02:55:39Z-
dc.date.available2023-10-16T02:55:39Z-
dc.date.issued2023-
dc.identifier.issn16936930-
dc.identifier.urihttp://hdl.handle.net/123456789/4938-
dc.descriptionScopusen_US
dc.description.abstractThe rapid development of the internet of things (IoT) has taken an important role in daily activities. As it develops, IoT is very vulnerable to attacks and creates IoT for users. Intrusion detection system (IDS) can work efficiently and look for activity in the network. Many data sets have already been collected, however, when dealing with problems involving big data and hight data imbalances. This article proposes, using the dataset used by BotIoT to evaluate the system framework to be created, the XGBoost model to improve the detection performance of all types of attacks, to control unbalanced data using the imbalance ratio of each class weight (CW). The experimental results show that the proposed approach greatly increases the detection rate for infrequent disturbances.en_US
dc.language.isoenen_US
dc.publisherUniversitas Ahmad Dahlanen_US
dc.relation.ispartofTELKOMNIKA Telecommunication Computing Electronics and Controlen_US
dc.subjectImbalanced ratio classen_US
dc.subjectIntrusion detectionen_US
dc.subjectWeighted XGBoosten_US
dc.titleIntrusion detection system for imbalance ratio class using weighted XGBoost classifieren_US
dc.typeNationalen_US
dc.identifier.doi10.12928/TELKOMNIKA.v21i5.24735-
dc.description.page1102-1112en_US
dc.description.researchareaCybersecurityen_US
dc.volume21(5)en_US
dc.description.articleno5en_US
dc.description.typeArticleen_US
item.languageiso639-1en-
item.openairetypeNational-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptUNIVERSITI MALAYSIA KELANTAN-
Appears in Collections:Faculty of Data Science and Computing - Journal (Scopus/WOS)
Files in This Item:
File Description SizeFormat
24735-66393-1-PB.pdf599.22 kBAdobe PDFView/Open
scopusresults-Intrusion detection system for imbalance.pdf63.48 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.