Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/4953
DC FieldValueLanguage
dc.contributor.authorHadhrami Ab Ghanien_US
dc.contributor.authorAtiqullah Mohamed Dauden_US
dc.contributor.authorRosli Besaren_US
dc.contributor.authorZamani Md Sanien_US
dc.contributor.authorMohd Nazeri Kamaruddinen_US
dc.contributor.authorSyabeela Syahalien_US
dc.date.accessioned2023-11-01T03:54:17Z-
dc.date.available2023-11-01T03:54:17Z-
dc.date.issued2023-
dc.identifier.issn979-835032521-8-
dc.identifier.urihttp://hdl.handle.net/123456789/4953-
dc.descriptionScopusen_US
dc.description.abstractPrior research has shown that various road marker classification mechanisms in clear or dry weather conditions have high accuracy performance. However, the performance tends to be lower under rainy driving conditions due to the reduced quality of the road image when detecting the five classes of road markers which are Single, Single-Single, Dashed, Solid-Dashed, and Dashed-Solid. To address this challenging condition, lane marker detection based on deep learning approach is proposed in this paper. The target weather condition is rainy, which is very challenging as it causes the surface of the roads, especially the area which includes the lane marker to become blurry and unclear due to the rainwater. In order to carefully select the right features of the road such that the lane marker can be classified and detected successfully. The lane marker object is captured from the frames of the video clips taken from established published video datasets. With this fast and better lane marker detection, the achievable classification precision is satisfactory although the weather is rainy.en_US
dc.description.sponsorshipMalaysian Ministry of Higher Education (FRGS/1/2019/TK04/MMU/02/2).en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.subjectDeep learningen_US
dc.subjectTrainingen_US
dc.subjectLane detectionen_US
dc.subjectRoadsen_US
dc.subjectComputational modelingen_US
dc.subjectFeature extractionen_US
dc.subjectClassification algorithmsen_US
dc.titleLane Detection Using Deep Learning for Rainy Conditionsen_US
dc.typeInternationalen_US
dc.relation.conferenceProceedings of the 9th International Conference on Computer and Communication Engineering, ICCCE 2023en_US
dc.identifier.doi10.1109/ICCCE58854.2023.10246071-
dc.description.funding(FRGS/1/2019/TK04/MMU/02/2)en_US
dc.description.page373-376en_US
dc.description.researchareaComputer visionen_US
dc.relation.seminar9th International Conference on Computer and Communication Engineering, ICCCE 2023en_US
dc.date.seminarstartdate2023-08-13-
dc.date.seminarenddate2023-08-16-
dc.description.placeofseminarKuala Lumpur, Malaysiaen_US
dc.description.seminarorganizerIIUMen_US
dc.description.typeIndexed Proceedingsen_US
dc.contributor.correspondingauthorhadhrami.ag@umk.edu.myen_US
item.languageiso639-1en-
item.openairetypeInternational-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptUNIVERSITI MALAYSIA KELANTAN-
Appears in Collections:Faculty of Data Science and Computing - Proceedings
Files in This Item:
File Description SizeFormat
ICCCE2023format_camera-ready_lane_detect.pdfLane Detection Using Deep Learning for Rainy Conditions454.39 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.