Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5892
DC FieldValueLanguage
dc.contributor.authorAnees, M. T.en_US
dc.contributor.authorAkhtar, M. N.en_US
dc.contributor.authorJanvekar, A. A.en_US
dc.contributor.authorGupta, G.en_US
dc.contributor.authorIrawan, A. P.en_US
dc.contributor.authorIsmail, A. K.en_US
dc.contributor.authorMohamad, M.en_US
dc.date.accessioned2024-01-28T08:34:15Z-
dc.date.available2024-01-28T08:34:15Z-
dc.date.issued2023-
dc.identifier.issn0094243X-
dc.identifier.urihttp://hdl.handle.net/123456789/5892-
dc.descriptionScopusen_US
dc.description.abstractHydrological modeling required essential input data such as river bathymetry, discharge, topographic and floodplain elevation values, manning's n values, and precipitation. In this study, river bathymetry and spatial distribution of precipitation were focused because of challenges in their estimation and associated uncertainties. These input data are also important in accurate flood risk and vulnerability assessment. Previous studies developed several models for their estimation using remote sensing and GIS. However, further improvement is required for their accurate estimation. This study will be helpful in accurate spatio-temporal estimation of these two input data. Furthermore, it was suggested the use of machine learning approaches to handle big data obtained from satellite images for further improvement in the spatio-temporal estimation.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.titleEstimation of River Bathymetry and Spatial Distribution of Precipitation and Their Uncertaintiesen_US
dc.typeInternationalen_US
dc.relation.conferenceAIP Conference Proceedingsen_US
dc.identifier.doi10.1063/5.0126176-
dc.volume2680(1)en_US
dc.relation.seminarth Tarumanagara International Conference of the Applications of Technology and Engineering, TICATE 2021en_US
dc.description.articleno020018en_US
dc.date.seminarstartdate2021-08-05-
dc.date.seminarenddate2021-08-06-
dc.description.placeofseminarVirtualen_US
dc.description.typeIndexed Proceedingsen_US
item.languageiso639-1en-
item.openairetypeInternational-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Faculty of Data Science and Computing - Proceedings
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.