Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/6362
DC FieldValueLanguage
dc.contributor.authorXin Lien_US
dc.contributor.authorNorriza Binti Hussinen_US
dc.contributor.authorIsmail, N. A.en_US
dc.date.accessioned2024-08-25T02:08:52Z-
dc.date.available2024-08-25T02:08:52Z-
dc.date.issued2024-
dc.identifier.issn0277786X-
dc.descriptionScopusen_US
dc.description.abstractProtecting the personal safety of on-site workers is an important task in enterprise production. In order to achieve widespread deployment to edge computing terminals, a lightweight object detection algorithm based on YOLOv5 is used to implement the personal safety detection task for workers. To achieve a lightweight task, PConv is utilized as the convolutional layer to decrease computational complexity, while Bi-Level Routing Attention is incorporated to enhance model accuracy. Furthermore, four detection heads are employed to improve object recognition capabilities. After experimentation, the precision can be improved by 3.4% compared with the baseline model, the parameters are reduced by 1.91MB, and the model size is decreased by 3.2MB.en_US
dc.language.isoenen_US
dc.publisherSPIEen_US
dc.subjectBi-Level Routing Attentionen_US
dc.subjectLightweight Tasken_US
dc.subjectObject Detectionen_US
dc.titleDesign of enterprise worker safety detection algorithm based on YOLOen_US
dc.typeInternationalen_US
dc.relation.conferenceProceedings of SPIE - The International Society for Optical Engineeringen_US
dc.identifier.doihttps://doi.org/10.1117/12.3034764-
dc.volume13210en_US
dc.relation.seminar3rd International Symposium on Computer Applications and Information Systems, ISCAIS 2024en_US
dc.description.articleno132101Den_US
dc.date.seminarstartdate2024-03-22-
dc.date.seminarenddate2024-03-24-
dc.description.placeofseminarWuhanen_US
dc.description.typeIndexed Proceedingsen_US
item.languageiso639-1en-
item.openairetypeInternational-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.deptUniversiti Malaysia Kelantan-
Appears in Collections:Faculty of Data Science and Computing - Proceedings
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.